Publications by authors named "Igor I Shaganov"

In this paper we investigate the possibility to apply the concepts of non-specific intermolecular interactions and dispersive local field effect approach for study of the influence of interactions of metal nanoparticles with matrix molecules on the spectral characteristics of composites. The effect of intermolecular (interparticle) interactions and the influence of the dielectric environment on the peak position of the plasmon resonance band of colloidal solutions and thin films formed from noble metal nanostructures is determined. Simulated and experimental absorption spectra obtained for a colloidal solution of silver and gold nanoparticles, of various shapes and sizes in water and glycerol, are in good agreement.

View Article and Find Full Text PDF

The spectral properties of composite materials based on small particles under 1D, 2D, and 3D size confinement are described using a combination of dispersive internal field and effective media theory approaches. Calculations performed for a number of crystalline materials have shown that the peak position and intensity of the vibrational band of the material under conditions of 1D, 2D, and 3D size confinement are changed, whereas the bandwidth of the band remains the same. In the case of 3D confinement, the peak position of the spectrum of isolated "mesoparticles" (epsilon(meso)(2)) appears to be very close to the intrinsic frequency of the lattice vibrations, calculated from the elastic constants of this crystal, as well as to the Fröhlich's frequency.

View Article and Find Full Text PDF