Publications by authors named "Igor Grivennikov"

Current antidepressant therapy shows substantial limitations, and there is an urgent need for the development of new treatment strategies for depression. Stressful events and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis play an important role in the pathogenesis of depression. HPA axis activity is self-regulated by negative feedback at several levels including adrenocorticotropic hormone (ACTH)-mediated feedback.

View Article and Find Full Text PDF

Neuroinflammation is considered to be one of the driving factors in Parkinson's disease (PD). This study was conducted using neuronal and glial cell cultures differentiated from induced pluripotent stem cells (iPSC) of healthy donors (HD) and PD patients with different mutations (PD). Based on the results of RNA sequencing, qPCR and ELISA, we revealed transcriptional and post-transcriptional changes in HD and PD neurons cultivated in HD and PD glial-conditioned medium.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most serious movement disorder, but the actual cause of this disease is still unknown. Induced pluripotent stem cell-derived neural cultures from PD patients carry the potential for experimental modeling of underlying molecular events. We analyzed the RNA-seq data of iPSC-derived neural precursor cells (NPCs) and terminally differentiated neurons (TDNs) from healthy donors (HD) and PD patients with mutations in published previously.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Despite numerous studies, the causes of this pathology remain completely unknown. This is, among other things, due to the difficulty of obtaining biological material for analysis.

View Article and Find Full Text PDF

Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative pathology caused by the progressive loss of dopaminergic neurons in the substantia nigra. Juvenile PD is known to be strongly associated with mutations in the PARK2 gene encoding E3 ubiquitin ligase Parkin. Despite numerous studies, molecular mechanisms that trigger PD remain largely unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative diseases characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra. Mutations in the gene are a frequent cause of familial forms of PD. Sustained chronic neuroinflammation in the central nervous system makes a significant contribution to neurodegeneration events.

View Article and Find Full Text PDF

Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a complex systemic disorder caused by neurodegenerative processes in the brain that are mainly characterized by progressive loss of dopaminergic neurons in the substantia nigra. About 10% of PD cases have been linked to specific gene mutations (Zafar and Yaddanapudi, 2022) including the gene that encodes a RING domain-containing E3 ubiquitin ligase Parkin. PD-Parkin patients have a younger onset, longer disease duration, and more severe clinical symptoms in comparison to PD patients with unknown causative PD mutations (Zhou et al.

View Article and Find Full Text PDF

Oxidative stress (OS) is implicated in the pathogenesis of several neurodegenerative diseases. We have previously shown that N-acyl dopamines (N-ADA and N-DDA) protect the neural cells of healthy donors and patients with Parkinson's disease from OS. In this study, we assessed the effects of N-acyl dopamines on the expression of neurotrophic factors in human-induced pluripotent stem cell-derived neuronal cultures enriched with dopaminergic neurons under conditions of OS induced by hydrogen peroxide.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a widespread severe neurodegenerative disease that is characterized by pronounced deficiency of the dopaminergic system and disruption of the function of other neuromodulator systems. Although heritable genetic factors contribute significantly to PD pathogenesis, only a small percentage of sporadic cases of PD can be explained using known genetic risk factors. Due to that, it could be inferred that changes in gene expression could be important for explaining a significant percentage of PD cases.

View Article and Find Full Text PDF

The prominent protective effects in diverse neuron injury paradigms exerted by cannabinoids and in particular their endogenously produced species render the endocannabinoid system a promising molecular target in the treatment of neurodegenerative diseases. However, the effects of individual endocannabinoids in human cells remain poorly investigated. Neural derivatives of human induced pluripotent stem cells (iPSC) offer unique opportunities for studying the neuroprotective compounds and development of patient-specific treatment.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. In most cases, the development of the disease is sporadic and is not associated with any currently known mutations associated with PD. It is believed that changes associated with the epigenetic regulation of gene expression may play an important role in the pathogenesis of this disease.

View Article and Find Full Text PDF

The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is increasingly used for detection of various macromolecules and metabolites in biological samples. Here, we present a detailed analysis of the CuAAC reaction conditions in cells and tissue sections. Using the optimized CuAAC conditions, we have devised a highly sensitive immunostaining technique, based on the tyramide signal amplification/catalyzed reporter deposition (TSA/CARD) method with a novel alkyne tyramide substrate.

View Article and Find Full Text PDF

Emerging evidence implicates impaired self-regulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammation as important and closely related components of the pathophysiology of major depression. Antidepressants show anti-inflammatory effects and are suggested to enhance glucocorticoid feedback inhibition of the HPA axis. HPA axis activity is also negatively self-regulated by the adrenocorticotropic hormone (ACTH), a potent anti-inflammatory peptide activating five subtypes of melanocortin receptors (MCRs).

View Article and Find Full Text PDF

Purpose: It is well established that cholinergic neurons of the basal forebrain degenerate in Alzheimer's dementia. Although recent studies were concentrated on screening molecules that might reduce the concomitant cell loss, little is known about therapeutically promising molecules. We studied the effect of Semax (Met-Glu-His-Phe-Pro-Gly-Pro), a behaviorally active adrenocorticotropic hormone (4-10) analogue, on survival of cholinergic basal forebrain neurons in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • Semax is a heptapeptide that enhances learning and has neuroprotective effects when applied intranasally.
  • A single dose of Semax significantly increases BDNF protein levels and activates trkB in the hippocampus of rats, indicating enhanced neural signaling.
  • Rats treated with Semax exhibited improved cognitive functions, evidenced by increased conditioned avoidance reactions.
View Article and Find Full Text PDF

The heptapeptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is an analogue of the N-terminal fragment (4-10) of adrenocorticotropic hormone which, after intranasal application, has profound effects on learning and memory formation in rodents and humans, and also exerts marked neuroprotective effects. A clue to the molecular mechanism underlying this neurotropic action was recently given by the observation that Semax stimulates the synthesis of brain-derived neurotrophic factor (BDNF), a potent modulator of synaptic plasticity, in astrocytes cultured from rat basal forebrain. In the present study, we investigated whether Semax affects BDNF levels in rat basal forebrain upon intranasal application of the peptide.

View Article and Find Full Text PDF

Corticotrophin (ACTH) and its analogues, particularly Semax (Met-Glu-His-Phe-Pro-Gly-Pro), demonstrate nootropic activity. Close functional and anatomical links have been established between melanocortinergic and monoaminergic brain systems. The aim of present work was to investigate the effects of Semax on neurochemical parameters of dopaminergic- and serotonergic systems in rodents.

View Article and Find Full Text PDF

Among the viral regulatory genes the tat and nef genes of HIV-1 encode the proteins playing a central role in viral replication and exerting pleiotropic effects on the survival and growth of the cells. These effects differ in various cell types, possibly due to the use of genes from different HIV-1 isolates. In this work, we studied the effects of the tat and nef genes on three types of cultured rat cells: primary embryo fibroblasts, pseudonormal Rat-2, and pheochromocytoma PC12.

View Article and Find Full Text PDF