Publications by authors named "Igor Gayday"

A numerical approach is developed to capture the effect of rotation-vibration coupling in a practically affordable way. In this approach only a limited number of adjacent rotational components are considered to be coupled, while the couplings to other rotational components are neglected. This partially coupled (PC) approach permits to reduce the size of Hamiltonian matrix significantly, which enables the calculations of ro-vibrational states above dissociation threshold (scattering resonances) for large values of total angular momentum.

View Article and Find Full Text PDF

A theoretical approach is developed for the description of all possible recombination pathways in the ozone forming reaction, without neglecting any process , and without decoupling the individual pathways one from another. These pathways become physically distinct when a rare isotope of oxygen is introduced, such as O, which represents a sensitive probe of the ozone forming reaction. Each isotopologue of O contains two types of physically distinct entrance channels and two types of physically distinct product wells, creating four recombination pathways.

View Article and Find Full Text PDF

Scattering resonances above dissociation threshold are computed for four isotopically substituted ozone species: 16O18O16O, 16O16O18O, 18O16O18O and 16O18O18O, using a variational method with accurate treatment of the rotation-vibration coupling terms (Coriolis effect) for all values of the total angular momentum J from 0 to 4. To make these calculations numerically affordable, a new approach was developed which employs one vibrational basis set optimized for a typical rotational excitation (J,Λ), to run coupled rotation-vibration calculations at several desired values of J. In order to quantify the effect of Coriolis coupling, new data are contrasted with those computed using the symmetric-top rotor approximation, where the rotation-vibration coupling terms are neglected.

View Article and Find Full Text PDF

A theoretical framework and a computer code (SpectrumSDT) are developed for accurate calculations of coupled rotational-vibrational states in triatomic molecules using hyper-spherical coordinates and taking into account the Coriolis coupling effect. Concise final formulas are derived for the construction of the Hamiltonian matrix using an efficient combination of the variational basis representation and discrete variable representation methods with locally optimized basis sets and grids. First, the new code is tested by comparing its results with those of the APH3D program of Kendrick et al.

View Article and Find Full Text PDF

Several alternative methods for the description of the interaction between rotation and vibration are compared and contrasted using hyperspherical coordinates for a triatomic molecule. These methods differ by the choice of the -axis and by the assumption of a prolate or oblate rotor shape of the molecule. For each case, a block-structure of the rotational-vibrational Hamiltonian matrix is derived and analyzed, and the advantages and disadvantages of each method are made explicit.

View Article and Find Full Text PDF

Accurate calculations of vibrational states in singly and doubly substituted ozone molecules are carried out, up to dissociation threshold. Analysis of these spectra reveals noticeable deviations from the statistical factor of 2 for the ratio between the number of states in asymmetric and symmetric ozone molecules. It is found that, for the lower energy parts of spectra, the ratio is less than 2 in the singly substituted ozone molecules, but it is more than 2 in the doubly substituted ozone molecules.

View Article and Find Full Text PDF

In this paper, two levels of theory are developed to determine the role of scattering resonances in the process of ozone formation. At the lower theory level, we compute resonance lifetimes in the simplest possible way, by neglecting all couplings between the diabatic vibrational channels in the problem. This permits to determine the effect of "shape" resonances, trapped behind the centrifugal barrier and populated by quantum tunneling.

View Article and Find Full Text PDF