Publications by authors named "Igor G Boulatnikov"

One of the fundamental biochemical defects underlying the complications of diabetic cardiovascular system is elevation of diacylglycerol (DAG) and its effects on protein kinase C (PKC) signaling. It has been noted that exercise training attenuates poor cardiac performance in Type 1 diabetes. However, the role of PKC signaling in exercise-induced alleviation of cardiac abnormalities in diabetes is not clear.

View Article and Find Full Text PDF

Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, stimulates energy production from glycogen in the cascade activation of glycogenolysis. Its large homologous alpha and beta subunits regulate the activity of the catalytic gamma subunit and account for 81% of PhK's mass. Both subunits are thought to be multidomain structures, and recent predictions based on their sequences suggest the presence of potentially functional glucoamylase (GH15)-like domains near their amino termini.

View Article and Find Full Text PDF

Understanding the regulatory interactions among the 16 subunits of the (alphabetagammadelta)(4) phosphorylase b kinase (PhK) complex can only be achieved through reconstructing the holoenzyme or its subcomplexes from the individual subunits. In this study, recombinant baculovirus carrying a vector containing a multigene cassette was created to coexpress in insect cells alpha, beta, gamma, and delta subunits corresponding to rabbit skeletal muscle PhK. The hexadecameric recombinant PhK (rPhK) and its corresponding alphagammadelta trimeric subcomplex were purified to homogeneity with proper subunit stoichiometries.

View Article and Find Full Text PDF

We have investigated the possible biochemical basis for enhancements in NO production in endothelial cells that have been correlated with agonist- or shear stress-evoked phosphorylation at Ser-1179. We have found that a phosphomimetic substitution at Ser-1179 doubles maximal synthase activity, partially disinhibits cytochrome c reductase activity, and lowers the EC(50)(Ca(2+)) values for calmodulin binding and enzyme activation from the control values of 182 +/- 2 and 422 +/- 22 nm to 116 +/- 2 and 300 +/- 10 nm. These are similar to the effects of a phosphomimetic substitution at Ser-617 (Tran, Q.

View Article and Find Full Text PDF

Skeletal muscle phosphorylase kinase (PhK) is an (alphabetagammadelta) 4 hetero-oligomeric enzyme complex that phosphorylates and activates glycogen phosphorylase b (GP b) in a Ca (2+)-dependent reaction that couples muscle contraction with glycogen breakdown. GP b is PhK's only known in vivo substrate; however, given the great size and multiple subunits of the PhK complex, we screened muscle extracts for other potential targets. Extracts of P/J (control) and I/lnJ (PhK deficient) mice were incubated with [gamma- (32)P]ATP with or without Ca (2+) and compared to identify potential substrates.

View Article and Find Full Text PDF