Microproteins encoded by small open reading frames (smORFs) comprise the "dark matter" of proteomes. Although functional microproteins were identified in diverse organisms from all three domains of life, bacterial smORFs remain poorly characterized. In this comprehensive study of intergenic smORFs (ismORFs, 15-70 codons) in 5,668 bacterial genomes of the family Enterobacteriaceae, we identified 67,297 clusters of ismORFs subject to purifying selection.
View Article and Find Full Text PDFMethods Mol Biol
April 2024
Here, we report our approach to peptidomic analysis of the plant model Physcomitrium patens. Intracellular and extracellular peptides were extracted under conditions preventing proteolytic digestion by endogenous proteases. The extracts were fractionated on size exclusion columns to isolate intracellular peptides and on reversed-phase cartridges to isolate extracellular peptides, with the isolated peptides subjected to LC-MS/MS analysis.
View Article and Find Full Text PDFBackground: RAPID ALKALINIZATION FACTOR (RALFs) are cysteine-rich peptides that regulate multiple physiological processes in plants. This peptide family has considerably expanded during land plant evolution, but the role of ancient RALFs in modulating stress responses is unknown.Results: Here, we used the moss Physcomitrium patens as a model to gain insight into the role of RALF peptides in the coordination of plant growth and stress response in non-vascular plants.
View Article and Find Full Text PDFPlant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in controlling the temperature regulation of plant-virus interactions are poorly characterised.
View Article and Find Full Text PDFSmall open reading frames (<100 codons) that are located on long noncoding RNAs (lncRNAs) can encode functional microproteins. These microproteins are shown to play important roles in different cellular processes, such as cell proliferation, development and disease response [1], [2], [3], [4], [5], [6]. However, there are only a few known lncRNA-encoded functional microproteins in plants.
View Article and Find Full Text PDFNonsense-mediated RNA decay (NMD) mechanism controls the quality of eukaryotic mRNAs by degradation of aberrant transcripts with a premature stop codon (PTC) in a pioneer round of translation. Besides aberrant transcripts, up to 10% of normal mRNA transcripts can be regulated by NMD. As NMD machinery is associated with translation, this system takes part in proteome formation in eukaryotic cells [1,2].
View Article and Find Full Text PDFThousands of naturally occurring peptides differing in their origin, abundance and possible functions have been identified in the tissue and biological fluids of vertebrates, insects, fungi, plants and bacteria. These peptide pools are referred to as intracellular or extracellular peptidomes, and besides a small proportion of well-characterized peptide hormones and defense peptides, are poorly characterized. However, a growing body of evidence suggests that unknown bioactive peptides are hidden in the peptidomes of different organisms.
View Article and Find Full Text PDFPervasive transcription of eukaryotic genomes results in expression of long non-coding RNAs (lncRNAs) most of which are poorly conserved in evolution and appear to be non-functional. However, some lncRNAs have been shown to perform specific functions, in particular, transcription regulation. Thousands of small open reading frames (smORFs, <100 codons) located on lncRNAs potentially might be translated into peptides or microproteins.
View Article and Find Full Text PDFPlant-virus interactions are frequently influenced by elevated temperature, which often increases susceptibility to a virus, a scenario described for potato cultivar Chicago infected with potato virus Y (PVY). In contrast, other potato cultivars such as Gala may have similar resistances to PVY at both normal (22 °C) and high (28 °C) temperatures. To elucidate the mechanisms of temperature-independent antivirus resistance in potato, we analysed responses of Gala plants to PVY at different temperatures using proteomic, transcriptional and metabolic approaches.
View Article and Find Full Text PDFPlants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood.
View Article and Find Full Text PDFDehydrins are well-known components of plant responses to different stresses that cause dehydration, including drought, freezing, salinity, etc. In conifers, the dehydrin gene family is very large, implying that the members of this family have important physiological functions in conifer stress tolerance. However, dehydrin gene expression displays a wide range of responses to stress, from thousand-fold increased expression to decreased expression, and it is generally unknown how regulatory systems are connected at the mRNA and protein levels.
View Article and Find Full Text PDFIn recent years, non-coding RNAs (ncRNAs) have gained unprecedented attention as new and crucial players in the regulation of numerous cellular processes and disease responses. In this review, we describe how diverse ncRNAs, including both small RNAs and long ncRNAs, may be used to engineer resistance against plant viruses. We discuss how double-stranded RNAs and small RNAs, such as artificial microRNAs and trans-acting small interfering RNAs, either produced in transgenic plants or delivered exogenously to non-transgenic plants, may constitute powerful RNA interference (RNAi)-based technology that can be exploited to control plant viruses.
View Article and Find Full Text PDFNonsense-mediated mRNA decay (NMD) is a system that controls the quality of mRNA transcripts in eukaryotes by degradation of aberrant transcripts in a pioneer round of translation. In mammals, NMD targets one-third of mutated, disease-causing mRNAs and ∼10% of unmutated mRNAs, facilitating appropriate cellular responses to environmental changes [1]. In plants, NMD plays an important role in development and regulating abiotic and biotic stress responses [2].
View Article and Find Full Text PDFPlant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized.
View Article and Find Full Text PDFIn addition to photosynthesis, chloroplasts perform a variety of important cellular functions in the plant cell, which can, for example, regulate plant responses to abiotic and biotic stress conditions. Under stress, intensive chloroplast protein remodeling and degradation can occur, releasing large numbers of endogenous peptides. These protein-derived peptides can be found intracellularly, but also in the plant secretome.
View Article and Find Full Text PDFPlants have evolved a sophisticated innate immune system to cope with a diverse range of phytopathogens and insect herbivores. Plasma-membrane-localized pattern recognition receptors (PRRs), such as receptor-like kinases (RLK), recognize special signals, pathogen- or damage-associated molecular patterns (PAMPs or DAMPs), and trigger immune responses. A growing body of evidence shows that many peptides hidden in both plant and pathogen functional protein sequences belong to the group of such immune signals.
View Article and Find Full Text PDFGenomes contain millions of short (<100 codons) open reading frames (sORFs), which are usually dismissed during gene annotation. Nevertheless, peptides encoded by such sORFs can play important biological roles, and their impact on cellular processes has long been underestimated. Here, we analyzed approximately 70,000 transcribed sORFs in the model plant (moss).
View Article and Find Full Text PDFBackground: Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear.
View Article and Find Full Text PDFSatellite DNA (satDNA) constitutes a substantial part of eukaryotic genomes. In the last decade, it has been shown that satDNA is not an inert part of the genome and its function extends beyond the nuclear membrane. However, the number of model plant species suitable for studying the novel horizons of satDNA functionality is low.
View Article and Find Full Text PDFPlant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones.
View Article and Find Full Text PDFHere, we report our approach to peptidomic analysis of the plant object which led to structure elucidation of the title peptides. P. patens samples were extracted under conditions preventing proteolytic digestion by endogenous proteases.
View Article and Find Full Text PDFAn idiogram construction following chromosome measurements is a versatile tool for cytological, cytogenetic and phylogenetic studies. The information on chromosome length, centromere index and position of cytogenetic landmarks along with modern techniques (e.g.
View Article and Find Full Text PDFAlternative splicing (AS) can significantly impact the transcriptome and proteome of a eukaryotic cell. Here, using transcriptome and proteome profiling data, we analyzed AS in two life forms of the model moss Physcomitrella patens, namely protonemata and gametophores, as well as in protoplasts. We identified 12 043 genes subject to alternative splicing and analyzed the extent to which AS contributes to proteome diversity.
View Article and Find Full Text PDFPlant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest.
View Article and Find Full Text PDFBackground: Protein degradation is a basic cell process that operates in general protein turnover or to produce bioactive peptides. However, very little is known about the qualitative and quantitative composition of a plant cell peptidome, the actual result of this degradation. In this study we comprehensively analyzed a plant cell peptidome and systematically analyzed the peptide generation process.
View Article and Find Full Text PDF