Chikungunya virus (CHIKV) is a pathogenic arthritogenic alphavirus responsible for large-scale human epidemics for which a vaccine was recently approved for use. Mayaro virus (MAYV) is a related emerging alphavirus with epidemic potential with circulation overlap potential with CHIKV. We previously reported the ability of a non-replicating human adenovirus (AdV)-vectored vaccine expressing the MAYV structural polyprotein to protect against disease in mice following challenge with MAYV, CHIKV and UNAV.
View Article and Find Full Text PDFA mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.
View Article and Find Full Text PDFA nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.
View Article and Find Full Text PDFmRNA vaccines have attracted widespread research attention with clear advantages in terms of molecular flexibility, rapid development, and potential for personalization. However, current mRNA vaccine platforms have not been optimized for induction of CD4/CD8 T cell responses. In addition, the mucosal administration of mRNA based on lipid nanoparticle technology faces challenges in clinical translation.
View Article and Find Full Text PDFWaning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.
View Article and Find Full Text PDFOlefins are widely available at low costs, which explains the usefulness of developing new methods for their functionalization. Here we report a simple protocol that uses a photoredox catalyst and an inexpensive thiol catalyst to stitch together two olefins, forming a new C-C bond. Specifically, an electron-poor olefin is reduced by the photoredox catalyst to generate, upon protonation, a carbon radical, which is then captured by a neutral olefin.
View Article and Find Full Text PDFB cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells.
View Article and Find Full Text PDFWe previously described a nasally delivered monovalent adenoviral-vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-S, targeting Wuhan-1 spike [S]; iNCOVACC) that is currently used in India as a primary or booster immunization. Here, we updated the mucosal vaccine for Omicron variants by creating ChAd-SARS-CoV-2-BA.5-S, which encodes for a pre-fusion and surface-stabilized S protein of the BA.
View Article and Find Full Text PDFWe report a photochemical method for the functionalization of pyridines with radicals derived from allylic C-H bonds. Overall, two substrates undergo C-H functionalization to form a new C(sp)-C(sp) bond. The chemistry harnesses the unique reactivity of pyridinyl radicals, generated upon single-electron reduction of pyridinium ions, which undergo effective coupling with allylic radicals.
View Article and Find Full Text PDFThe capacity to efficiently deliver the gene-editing enzyme complex to target cells is favored over other forms of gene delivery as it offers one-time hit-and-run gene editing, thus improving precision and safety and reducing potential immunogenicity against edited cells in clinical applications. Here we performed a proof-of-mechanism study and demonstrated that a simian adenoviral vector for DNA delivery can be repurposed as a robust intracellular delivery platform for a functional Cas9/guide RNA (gRNA) complex to recipient cells. In this system, the clinically relevant adenovirus was genetically engineered with a plug-and-display technology based on SpyTag003/SpyCatcher003 coupling chemistry.
View Article and Find Full Text PDFDifluoroboryl complexes obtained from -acyl hydrazones upon brief treatment with boron trifluoride and allylic silane serve as efficient acceptors of alkyl radicals. The reaction of the boryl chelates with carboxylic acids in the presence of an acridine-type photocatalyst leading to -acyl hydrazides is described. The efficiency of addition at the C═N bond of the chelates is determined by the formation of a nitrogen-centered radical stabilized by the boron-containing heterocyclic ring.
View Article and Find Full Text PDFSARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy. We recently reported the protective activity of an intranasally administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose response, and cross-protective activity in mice.
View Article and Find Full Text PDFFor the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive.
View Article and Find Full Text PDFOsteosarcoma is one among the most common neoplasms in dogs. Current treatments show limited efficacy and fail to prevent metastasis. Conditionally replicative adenoviruses (CRAd) replicate exclusively in targeted tumor cells and release new virus particles to infect additional cells.
View Article and Find Full Text PDFA method for the one-step construction of 3,3,4,4-tetrafluorinated piperidines from nitrones and readily accessible tetrafluorinated iodobromobutane is described. The reaction requires an excess amount of ascorbic acid as the terminal reductant and is performed in the presence of an iridium photocatalyst activated by blue light. The annelation is a result of a radical addition at the nitrone, intramolecular nucleophilic substitution, and reduction of the N-O bond.
View Article and Find Full Text PDFThe coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge.
View Article and Find Full Text PDFHuman adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ.
View Article and Find Full Text PDFThe application of cancer gene therapy has heretofore been restricted to local, or locoregional, neoplastic disease contexts. This is owing to the lack of gene transfer vectors, which embody the requisite target cell selectivity required for metastatic disease applications. To this end, we have explored novel vector engineering paradigms to adapt adenovirus for this purpose.
View Article and Find Full Text PDFChikungunya virus (CHIKV) infections can cause severe and debilitating joint and muscular pain that can be long lasting. Current CHIKV vaccines under development rely on the generation of neutralizing antibodies for protection; however, the role of T cells in controlling CHIKV infection and disease is still unclear. Using an overlapping peptide library, we identified the CHIKV-specific T cell receptor epitopes recognized in C57BL/6 infected mice at 7 and 14 days post-infection.
View Article and Find Full Text PDFThe teratogenic potential of Zika virus (ZIKV) has made the development of an effective vaccine a global health priority. Here, we generate two gorilla adenovirus-based ZIKV vaccines that encode for pre-membrane (prM) and envelope (E) proteins (GAd-Zvp) or prM and the ectodomain of E protein (GAd-Eecto). Both vaccines induce humoral and cell-mediated immune responses and prevent lethality after ZIKV challenge in mice.
View Article and Find Full Text PDFTo mount a strong anti-tumor immune response, non T cell inflamed (cold) tumors may require combination treatment encompassing vaccine strategies preceding checkpoint inhibition. In vivo targeted delivery of tumor-associated antigens (TAA) to dendritic cells (DCs), relying on the natural functions of primary DCs in situ, represents an attractive vaccination strategy. In this study we made use of a full-length MART-1 expressing C/B-chimeric adenoviral vector, consisting of the Ad5 capsid and the Ad3 knob (Ad5/3), which we previously showed to selectively transduce DCs in human skin and lymph nodes.
View Article and Find Full Text PDF