A general intravenous anesthetic propofol (2,6-diisopropylphenol) is widely used in clinical, veterinary practice and animal experiments. It activates gamma- aminobutyric acid (GABAa) receptors. Though the cerebral cortex is one of the major targets of propofol action, no study of dose dependency of propofol action on cat visual cortex was performed yet.
View Article and Find Full Text PDFAs science and technology evolve, there is an increasing need for promotion of international scientific exchange. Collaborations, while offering substantial opportunities for scientists and benefit to society, also present challenges for those working with animal models, such as non-human primates (NHPs). Diversity in regulation of animal research is sometimes mistaken for the absence of common international welfare standards.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
February 2020
The present study used optical imaging to investigate the development of the optical signal within orientational columns in primary visual cortex of cats reared under conditions of rhythmic light stimulation. Results showed that, although inter-columnar spacing was unchanged, a 3-5-fold decrement in optical signal from orientation columns and a drastic decline in contrast sensitivity was observed in both areas 18 and 17. These data suggest the modification of cortical columnar functioning under artificially correlated synchronization of retinal input.
View Article and Find Full Text PDFConventional recording methods generally preclude following the activity of the same neurons in awake animals across days. This limits our ability to systematically investigate the principles of neuronal specialization, or to study phenomena that evolve over multiple days such as experience-dependent plasticity. To redress this shortcoming, we developed a drivable, chronically implanted microwire recording preparation that allowed us to follow visual responses in inferotemporal (IT) cortex in awake behaving monkeys across multiple days, and in many cases across months.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2014
Face perception in both humans and monkeys is thought to depend on neurons clustered in discrete, specialized brain regions. Because primates are frequently called upon to recognize and remember new individuals, the neuronal representation of faces in the brain might be expected to change over time. The functional properties of neurons in behaving animals are typically assessed over time periods ranging from minutes to hours, which amounts to a snapshot compared to a lifespan of a neuron.
View Article and Find Full Text PDFBackground: The basal forebrain (BF) regulates cortical activity by the action of cholinergic projections to the cortex. At the same time, it also sends substantial GABAergic projections to both cortex and thalamus, whose functional role has received far less attention. We used deep brain stimulation (DBS) in the BF, which is thought to activate both types of projections, to investigate the impact of BF activation on V1 neural activity.
View Article and Find Full Text PDFMany neurons in primate inferotemporal (IT) cortex respond selectively to complex, often meaningful, stimuli such as faces and objects. An important unanswered question is whether such response selectivity, which is thought to arise from experience-dependent plasticity, is maintained from day to day, or whether the roles of individual cells are continually reassigned based on the diet of natural vision. We addressed this question using microwire electrodes that were chronically implanted in the temporal lobe of two monkeys, often allowing us to monitor activity of individual neurons across days.
View Article and Find Full Text PDFThe rich and immediate perception of a familiar face, including its identity, expression and even intent, is one of the most impressive shared faculties of human and non-human primate brains. Many visually responsive neurons in the inferotemporal cortex of macaque monkeys respond selectively to faces, sometimes to only one or a few individuals, while showing little sensitivity to scale and other details of the retinal image. Here we show that face-responsive neurons in the macaque monkey anterior inferotemporal cortex are tuned to a fundamental dimension of face perception.
View Article and Find Full Text PDF