Publications by authors named "Igor Antipin"

Efficient catalytic systems for various organic transformations in green solvents, especially water, are in great demand. Catalytically active bis-NHC complexes of palladium(II) based on imidazole-4,5-dicarboxylic acid with different lipophilicities were obtained. The synthesis of imidazolium salts was complicated by the formation of side products of nucleophilic substitution by iodide ions in the Menshutkin reaction involving alkyl iodides, which was successfully resolved by using alkyl tosylates.

View Article and Find Full Text PDF

Nanosized chiral octahedral M coordination cages were prepared self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers.

View Article and Find Full Text PDF

The rational design of organic ligands with the aim to control their binding abilities towards different metal ions can be considered as one of the key concepts in supramolecular coordination chemistry. Regarding the macrocyclic compounds of thiacalix[4]arene family, this can be achieved the targeted modulation of macrocyclic platform rigidity as well as the proper choice of appended binding sites. Four macrocyclic salen-type ligands based on lower rim disubstituted thiacalix[4]arene derivatives, adopted in a cone conformation, bearing highly coordinating iminophenolic or catecholic groups and two -CH- moieties as spacers but presenting different abilities to form H-bonds, were chosen to elucidate the interplay between the conformational flexibility of the macrocyclic ligands, propensity to participate in the intermolecular H-bonding and the extraction ability of 3d-metal cations.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating and examining new functionalized asymmetric Gemini surfactants using a click-reaction method, highlighting the synthesis of alkyl- and azide-substituted variants.
  • The research measures the critical aggregation concentration values and investigates how these surfactants bind to bovine serum albumin (BSA) through fluorescence spectroscopy and light scattering techniques.
  • Findings reveal that the surfactants can alter their binding mechanism with BSA and that their interaction behaviors can be fully characterized using various scientific methods.
View Article and Find Full Text PDF

For the first time, dendrimers based on thiacalix[4]arenes bearing imidazolium dendrons on one side and alkyl fragments on another side of the macrocyclic platform and symmetrical dendrimers with four dendrons on both sides were synthesized. Dendrons consist of gallic acid-based branches functionalized with imidazolium and triazolium groups. The physicochemical properties of the dendrimers such as micellar concentration (CMC), size, and solubilization capacity were measured.

View Article and Find Full Text PDF

This work focuses on the synthesis of a new series of amphiphilic derivatives of calix[4]arenes for the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The aggregation properties of synthesized calix[4]arenes were studied using various techniques (fluorescence spectroscopy, nanoparticle tracking analysis, and dynamic light scattering). Increasing the length of the alkyl substituent led to stronger hydrophobic interactions, which increased polydispersity in solution.

View Article and Find Full Text PDF

Tumor selectivity is yet a challenge in chemotherapy-based cancer treatment. A series of calixarenes derivatized at the lower rim with 3-phenyl-1H-pyrazole units with variable upper-rim substituent and conformations of macrocyclic core, alkyl chain length between heterocycle and core, as well as phenolic monomer (5-(4-tert-butylphenyloxy)methoxy-3-phenyl-1H-pyrazole) have been synthesized and characterized in a range of therapeutically relevant cellular models (M-HeLa, MCF7, A-549, PC3, Chang liver, and Wi38) from different target organs/systems. Specific cytotoxicity for M-HeLa cells has been observed in tert-butylcalix[4]arene pyrazoles in 1,3-alternate (compound 7b) and partial cone (compound 7c) conformations with low mutagenicity and haemotoxicity and in vivo toxicity in mice.

View Article and Find Full Text PDF

The present work focuses on the study of the aggregation and complexing properties of calixarenes as potential DNA condensation agents for gene delivery. In the current study, 1,4-triazole derivatives of calix[4]arenes and containing monoammonium fragments were synthesized. The synthesized compound's structure was characterized by using various spectroscopic techniques (FTIR, HRESI MS, ¹H NMR and ¹³C NMR).

View Article and Find Full Text PDF

Context: The molecular design of spatially preorganized molecules is one of the critical issues in organic chemistry. Molecular recognition and multipoint binding define them. They organize nanoscale assemblies and devices and stably form host-guest inclusion complexes.

View Article and Find Full Text PDF

A series of new 2-hydroxy-3-methoxybenzylidenethiazolo[3,2-]pyrimidines with different aryl substituents at the 5 position are synthesized and characterized by H/ C NMR and IR-spectroscopy and mass-spectrometry, as well as single crystal X-ray diffraction (SCXRD). It was demonstrated that the type of hydrogen bonding can play a key role in the chiral discrimination of these compounds in the crystalline phase. The hydrogen bond of the O-H.

View Article and Find Full Text PDF

Brain tumor glioblastoma is one of the worst types of cancer. The blood-brain barrier prevents drugs from reaching brain cells and shields glioblastoma from treatment. The creation of nanocarriers to improve drug delivery and internalization effectiveness may be the solution to this issue.

View Article and Find Full Text PDF

Hypoxia accompanies many human diseases and is an indicator of tumor aggressiveness. Therefore, measuring hypoxia in vivo is clinically important. Recently, complexes of calix[4]arene were identified as potent hypoxia markers.

View Article and Find Full Text PDF

Fluorescent derivatives attract the attention of researchers for their use as sensors, photocatalysts and for the creation of functional materials. In order to create amphiphilic fluorescent derivatives of calixarenes, a fluorescein derivative containing oligoethylene glycol and propargyl groups was obtained. The resulting fluorescein derivative was introduced into three different (thia)calix[4]arene azide derivatives.

View Article and Find Full Text PDF

As a result of bright complexation properties, easy functionalization and the ability to self-organize in an aqueous solution, amphiphilic supramolecular macrocycles are being actively studied for their application in nanomedicine (drug delivery systems, therapeutic and theranostic agents, and others). In this regard, it is important to study their potential toxic effects. Here, the synthesis of amphiphilic calix[4]resorcinarene carboxybetaines and their esters and the study of a number of their microbiological properties are presented: cytotoxic effect on normal and tumor cells and effect on cellular and non-cellular components of blood (hemotoxicity, anti-platelet effect, and anticoagulant activity).

View Article and Find Full Text PDF

Artificial gene delivery systems are in great demand from both scientific and practical biomedical points of view. In this paper, we present the synthesis of a new click chemistry calix[4]arene precursor with free lower rim and new water-soluble calixarene triazoles with 12 amino-groups on the upper rim (one with free phenol hydroxyl groups and two another containing four butyl or tetradecyl fragments). Aggregation in the series of amino-triazole calixarenes of different lipophilicity (calixarene with free phenol hydroxyl groups or butyl and tetradecyl fragments on the lower rim) was studied using dynamic light scattering and fluorescent pyrene probe.

View Article and Find Full Text PDF

Carrying out organic reactions in water has attracted much attention. Catalytic reactions in water with metallosurfactants, which have both a metallocenter and the surface activity necessary for solubilizing hydrophobic reagents, are of great demand. Herein we proposed new approach to the synthesis of NHC PEPPSI metallosurfactants based on the sequential functionalization of imidazole 4,5-dicarboxylic acid with hydrophilic oligoethylene glycol and lipophilic alkyl fragments.

View Article and Find Full Text PDF

A series of new thiazolo[3,2-]pyrimidines different by aryl substituents in 2 and 5 positions are synthesized and characterized in solution as well as in the crystalline phase using H and C NMR-, IR-spectroscopies, mass-spectrometry methods, and single crystal X-ray diffraction (SCXRD). The SCXRD study revealed the role of intermolecular H-bonding in the formation of supramolecular architectures (racemic monomers, centrosymmetric racematic dimers, or homochiral 1D chains) of obtained thiazolo[3,2-]pyrimidines derivatives depending on solvents (aprotic DMSO or protic EtOH) used upon the crystallization process. Moreover, the in vitro study of cytotoxicity toward different tumor cells showed their high or moderate efficiency with moderate cytotoxicity against normal liver cells which allows to consider the obtained thiazolo[3,2-]pyrimidine derivatives as promising candidates for application as antitumor agents.

View Article and Find Full Text PDF

Giant octahedral M coordination cages were prepared self-assembly of sulfonylcalix[4]arene-supported tetranuclear M(II) clusters (M = Co, Ni) with hybrid linker based on tris(dipyrrinato)cobalt(III) complexes appended with peripherical carboxylic groups. Due to intrinsic and extrinsic porosity, the obtained solid-state supramolecular architectures demonstrated good performance as adsorbents for the separation of industrially important gases mixtures.

View Article and Find Full Text PDF

Elaboration of a convenient route towards donor-substituted pyrazoles from heteropropargyl precursors is challenging due to a number of thermodynamically favorable side reactions (e.g., acetylene-allene isomerization and Glaser homocoupling).

View Article and Find Full Text PDF

New fluorescent systems for photocatalysis, sensors, labeling, etc., are in great demand. Amphiphilic ones are of special interest since they can form functional colloidal systems that can be used in aqueous solutions.

View Article and Find Full Text PDF

Sulfur-containing groups preorganized on macrocyclic scaffolds are well suited for liquid-phase complexation of soft metal ions; however, their binding potential was not extensively studied at the air-water interface, and the effect of thioether topology on metal ion binding mechanisms under various conditions was not considered. Herein, we report the interface receptor characteristics of topologically varied thiacalixarene thioethers (linear bis-(methylthio)ethoxy derivative , OS-thiacrown-ether , and OS-bridged thiacalixtube ). The study was conducted in bulk liquid phase and Langmuir monolayers.

View Article and Find Full Text PDF

A new polymeric NHC carrier was synthesized by sequential supramolecular self-assembly and copper-catalyzed azide-alkyne cycloaddition (CuAAC) of amphiphilic imidazolium calix[4]arenes with octyl lipophilic fragments. Obtained polytriazole-imidazolium particles were found as monodisperse submicron particles, with the average diameter of 236 ± 34 nm and average molecular weight of 1380 ± 96 kDa. Successful CuAAC polymerization has been proved using IR spectroscopy and high-resolution ESI mass spectrometry.

View Article and Find Full Text PDF

The vibrational spectra of the p-tetrasulfonatothiacalix[4]arene pentasodium salt (TCAS) and tert-butylthiacalix[4]arene (BuTCA) were studied. Comparison of the TCAS and BuTCA IR spectra allows us to isolate the bands of tert-butyl and sulfonate groups. Geometry, IR and Raman spectra were calculated for conformation cone, partial cone, 1,2-, and 1,3-alternate.

View Article and Find Full Text PDF

A potential hypoxia-sensitive system host-guest complex of three calixarenes (including two with four anionic carboxyl and sulphonate azo fragments on the upper rim and a newly synthesized bis-azo adduct of calixarene in the cone configuration with azo fragments on the lower rim with the most widespread cationic and zwitterionic rhodamine dyes (123, 6G and B)) was studied using UV-VIS spectrometry and fluorescence as well as 1D and 2D NMR techniques. It was found that all three calixarenes form a complex with rhodamine dyes with a 1:1 composition. The association constants of calixarene-dye complexes with sulfonate calixarenes, especially in the case of tetra-anionic calixarene, turned out to be higher compared with carboxyl calixarene due to the more intense electrostatic interactions.

View Article and Find Full Text PDF

Understanding the interaction of ions with organic receptors in confined space is of fundamental importance and could advance nanoelectronics and sensor design. In this work, metal ion complexation of conformationally varied thiacalix[4]monocrowns bearing lower-rim hydroxy (type I), dodecyloxy (type II), or methoxy (type III) fragments was evaluated. At the liquid-liquid interface, alkylated thiacalixcrowns-5(6) selectively extract alkali metal ions according to the induced-fit concept, whereas crown-4 receptors were ineffective due to distortion of the crown-ether cavity, as predicted by quantum-chemical calculations.

View Article and Find Full Text PDF