Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens.
View Article and Find Full Text PDFAquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases.
View Article and Find Full Text PDFEndogenous antimicrobial peptides (AMPs) are evolutionarily ancient factors of innate immunity, which are produced by all multicellular organisms and play a key role in their protection against infection. Red king crab (Paralithodes camtschaticus), also called Kamchatka crab, is widely distributed and the best known species of all king crabs belonging to the family Lithodidae. Despite their economic importance, the genetic resources of king crabs are scarcely known and no full-genome sequences are available to date.
View Article and Find Full Text PDF5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous.
View Article and Find Full Text PDFEpigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology.
View Article and Find Full Text PDFTo investigate the role of dehydrins (DHNs) in extreme low-temperature (LT) tolerance, we sampled needle tissue of Siberian spruce (Picea obovata Ledeb.) from trees growing in an arboretum in Trondheim, Norway from August 2006 to April 2007 and tracked changes in LT tolerance via relative electrolyte leakage. We used western blotting to estimate relative amounts of proteins binding a DHN K-segment antibody, measured relative amounts of nine transcripts for small (<25 kDa) DHNs by quantitative reverse transcription-polymerase chain reaction (PCR) using primers developed for DHN transcripts in a closely related species, Picea abies (L.
View Article and Find Full Text PDFThe pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H.
View Article and Find Full Text PDFBackground: NB-LRR resistance proteins are involved in recognizing pathogens and other exogenous stressors in plants. Resistance proteins are the first step in induced defence responses and a better understanding of their regulation is important to understand the mechanisms of plant defence. Much of the post-transcriptional regulation in plants is controlled by microRNAs (miRNA).
View Article and Find Full Text PDFIn Norway spruce, the temperature during zygotic embryogenesis appears to adjust an adaptive epigenetic memory in the progeny that may regulate bud phenology and cold acclimation. Conditions colder than normal advance the timing whilst temperatures above normal delay the onset of these processes and altered performance is long lasting in progeny with identical genetic background. As a step toward unraveling the molecular mechanism behind an epigenetic memory, transcriptional analysis was performed on seedlings from seeds of six full-sib families produced at different embryogenesis temperature-cold (CE) vs warm (WE) under long and short day conditions.
View Article and Find Full Text PDFThe molecular basis for terminal bud formation in autumn is not well understood in conifers. By combining suppression subtractive hybridization and monitoring of gene expression by qRT-PCR analysis, we aimed to identify genes involved in photoperiodic control of growth cessation and bud set in Norway spruce. Close to 1400 ESTs were generated and their functional distribution differed between short day (SD-12 h photoperiod) and long day (LD-24 h photoperiod) libraries.
View Article and Find Full Text PDF*Norway spruce expresses a temperature-dependent epigenetic memory from the time of embryo development, which thereafter influences the timing bud phenology. MicroRNAs (miRNAs)are endogenous small RNAs, exerting epigenetic gene regulatory impacts. We have tested for their presence and differential expression.
View Article and Find Full Text PDFExpression of selected genes in needles of Norway spruce (Picea abies [L.] Karst) was investigated by following their transcription levels during late autumn. Transcription was assessed in mature needles which likely serve as sensor of environmental cues that enable trees in the temperate and boreal regions to change between stages of growth, frost tolerance and bud dormancy.
View Article and Find Full Text PDFCold deacclimation and preparation to flushing likely requires rehydration of meristems. Therefore, water stress related genes, such as dehydrins (DHN), might play an important role in providing protection during winter dormancy, deacclimation and bud burst timing processes. Here we report the sequence analysis of several Norway spruce DHN identified in late and early flushing suppressive subtraction hybridization cDNA libraries and in our Norway spruce EST database.
View Article and Find Full Text PDFTo identify differentially expressed genes of the white-rot fungus Heterobasidion parviporum, two cDNA libraries were constructed using suppressive subtraction hybridization (SSH) technique with RNA extracted from an advanced stage of decay area and from colonization front next to the reaction zone of the stem of a mature Norway spruce naturally colonized by the fungus. Besides several cytochrome P450s and hypothetical proteins with unknown function, the SSH libraries constructed contained, among others, genes involved in basic cellular processes, and lignin and cellulose degradation. To examine the role of selected candidate genes for each functional group, three trees, each colonized by a different genotype of the pathogen and showing a variable degree of wood decay, were used for real-time RT-PCR profiling of candidate genes.
View Article and Find Full Text PDFBackground: Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed.
View Article and Find Full Text PDF