Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H(ZrTi)O nanowires (HZTO-nw) and BaCaZrTiO multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs.
View Article and Find Full Text PDFThe lead-free BaCaZrTiO (BCZT) relaxor ferroelectric ceramic has aroused much attention due to its enhanced piezoelectric, energy storage and electrocaloric properties. In this study, the BCZT ceramic was elaborated by the solid-state reaction route, and the temperature-dependence of the structural, electrical, piezoelectric, energy storage and electrocaloric properties was investigated. X-ray diffraction analysis revealed a pure perovskite phase, and the temperature-dependence of Raman spectroscopy, dielectric and ferroelectric measurements revealed the phase transitions in the BCZT ceramic.
View Article and Find Full Text PDFThe design of lead-free ceramics for piezoelectric energy harvesting applications has become a hot topic. Among these materials, BaCaZrTiO (BCZT) and BaTiSnO (BTSn) are considered as potential candidates due to their enhanced piezoelectric properties. Here, the structural, electrical, piezoelectric and piezoelectric energy harvesting properties of the (1 - )BaCaZrTiO-BaTiSnO (BTSn, = 0.
View Article and Find Full Text PDFIt is well known that the ferroelectric layers in dielectric/ferroelectric/dielectric heterostructures harbor polarization domains resulting in the negative capacitance crucial for manufacturing energy-efficient field-effect transistors. However, the temperature behavior of the characteristic dielectric properties, and, hence, the corresponding behavior of the negative capacitance, are still poorly understood, restraining the technological progress thereof. Here we investigate the temperature-dependent properties of domain structures in the SrTiO/PbTiO/SrTiO heterostructures and demonstrate that the temperature-thickness phase diagram of the system includes the ferroelectric and paraelectric regions, which exhibit different responses to the applied electric field.
View Article and Find Full Text PDFBaCaZrTiO (BCZT) relaxor ferroelectric ceramics exhibit enhanced energy storage and electrocaloric performances due to their excellent dielectric and ferroelectric properties. In this study, the temperature-dependence of the structural and dielectric properties, as well as the field and temperature-dependence of the energy storage and the electrocaloric properties in BCZT ceramics elaborated at low-temperature hydrothermal processing are investigated. X-ray diffraction and Raman spectroscopy results confirmed the ferroelectric-paraelectric phase transition in the BCZT ceramic.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2019
High-performance lead-free multiferroic composites are desired to replace the lead-based ceramics in multifunctional device applications. Laminated compounds were prepared from ferroelectric and ferromagnetic materials. In this work, we present the laminated ceramics compound by considering the ferromagnetic LaCaMnO (LCMO) and the ferroelectric BaTiSnO (BTSO) in two different proportions.
View Article and Find Full Text PDFWe consider the Nernst-Ettingshausen (NE) effect in the presence of semiclassically strong magnetic fields for a quasi-two-dimensional system with a parabolic or linear dispersion of carriers. We show that the occurring giant oscillations of the NE coefficient are coherent with the recent experimental observation in graphene, graphite, and bismuth. In the 2D case we find the exact shape of these oscillations and show that their magnitude decreases (increases) with enhancement of the Fermi energy for Dirac fermions (normal carriers).
View Article and Find Full Text PDFThe novel phenomena induced by symmetry breaking at homointerfaces between ferroic variants in ferroelectric and ferroelastic materials have attracted recently much attention. Using variable temperature scanning microwave microscopy, we demonstrate the mesoscopic strain-induced metal-insulator phase transitions in the vicinity of ferroelastic domain walls in the semiconductive VO(2) that nucleated at temperatures as much as 10-12 degrees C below bulk transition, resulting in the formation of conductive channels in the material. Density functional theory is used to rationalize the process low activation energy.
View Article and Find Full Text PDFFormation of ferroelastic twin domains in vanadium dioxide (VO(2)) nanosystems can strongly affect local strain distributions, and hence couple to the strain-controlled metal-insulator transition. Here we report polarized-light optical and scanning microwave microscopy studies of interrelated ferroelastic and metal-insulator transitions in single-crystalline VO(2) quasi-two-dimensional (quasi-2D) nanoplatelets (NPls). In contrast to quasi-1D single-crystalline nanobeams, the 2D geometric frustration results in emergence of several possible families of ferroelastic domains in NPls, thus allowing systematic studies of strain-controlled transitions in the presence of geometrical frustration.
View Article and Find Full Text PDFBased on the Ginzburg-Landau approach, we generalize the Kittel theory and derive the interpolation formula for the temperature evolution of a multidomain polarization profile P(x,z). We resolve the long-standing problem of the near-surface polarization behavior in ferroelectric domains and demonstrate polarization vanishing instead of the usually assumed fractal domain branching. We propose an effective scaling approach to compare the properties of different domain-containing ferroelectric plates and films.
View Article and Find Full Text PDFWe show that the recently discovered double-valley splitting of the Landau levels in the quantum Hall effect in graphene can be explained as the perturbative orbital interaction of intravalley and intervalley microscopic orbital currents with a magnetic field. This effect is facilitated by the translationally noninvariant terms that correspond to graphene's crystallographic honeycomb symmetry but do not exist in the relativistic theory of massless Dirac fermions in quantum electrodynamics. We discuss recent data in view of these findings.
View Article and Find Full Text PDFSpectral analysis of the Shubnikov-de Haas magnetoresistance oscillations and the quantum Hall effect (QHE) measured in quasi-2D highly oriented pyrolytic graphite (HOPG) [Phys. Rev. Lett.
View Article and Find Full Text PDFThe quantum de Haas-van Alphen (dHvA) and Shubnikov-de Haas oscillations measured in graphite were decomposed by pass-band filtering onto contributions from three different groups of carriers. Generalizing the theory of dHvA oscillations for 2D carriers with an arbitrary spectrum and by detecting the oscillation frequencies using a method of two-dimensional phase-frequency analysis which we developed, we identified these carriers as (i) minority holes having a 2D parabolic massive spectrum p(2)(perpendicular)/2m(perpendicular), (ii) massive majority electrons with a 3D spectrum and (iii) majority holes with a 2D Dirac-like spectrum +/-vp(perpendicular) which seems to be responsible for the unusual strongly-correlated electronic phenomena in graphite.
View Article and Find Full Text PDF