Publications by authors named "Igor A Kornev"

An energetic expression containing four different macroscopic terms is proposed to explain and understand coupled magnetic orders (and the directions of the simultaneously occurring ferromagnetic and/or antiferromagnetic vectors) in terms of anti-phase and/or in-phase tilting of oxygen octahedra in magnetic and multiferroic perovskites. This expression is derived from a suggested simple microscopic formula, and has its roots in the Dzyaloshinsky-Moriya interaction. Comparison with data available in the literature and with first-principles calculations we conduct here confirms the validity of such a simple and general law for any tested structural paraelectric and even ferroelectric phase, and for any chosen direction of any selected primary magnetic vector.

View Article and Find Full Text PDF

The effect of misfit strain on properties of epitaxial BiFeO3 films that are grown along the pseudocubic [110] direction, rather than along the usual [001] direction, is predicted from density-functional theory. These films adopt the monoclinic Cc space group for compressive misfit strains smaller in magnitude than ≃1.6% and for any investigated tensile strain.

View Article and Find Full Text PDF

An effective Hamiltonian scheme is developed to study finite-temperature properties of multiferroic BiFeO3. This approach reproduces very well (i) the symmetry of the ground state, (ii) the Néel and Curie temperatures, and (iii) the intrinsic magnetoelectric coefficients (that are very weak). This scheme also predicts (a) an overlooked phase above Tc approximately 1100 K that is associated with antiferrodistortive motions, as consistent with our additional x-ray diffractions, (b) improperlike dielectric features above Tc, and (c) that the ferroelectric transition is of first order with no group-subgroup relation between the paraelectric and polar phases.

View Article and Find Full Text PDF

A first-principles-derived scheme that incorporates ferroelectric and antiferrodistortive degrees of freedom is developed to study finite-temperature properties of Pb(Zr1-xTix)O3 solid solution near its morphotropic phase boundary. The use of this numerical technique (i) resolves controversies about the monoclinic ground state for some Ti compositions, (ii) leads to the discovery of an overlooked phase, and (iii) yields three multiphase points that are each associated with four phases. Additional neutron diffraction measurements strongly support some of these predictions.

View Article and Find Full Text PDF

Ab initio simulations and experimental techniques are combined to reveal that, unlike what was commonly accepted for more than 30 years, perovskites and related materials enhance their ferroelectricity as hydrostatic pressure increases above a critical value. This unexpected high-pressure ferroelectricity is different in nature from conventional ferroelectricity because it is driven by an original electronic effect rather by long-range interactions.

View Article and Find Full Text PDF

The properties of [Pb(Zr(1-x(1))Ti(x(1)))O(3)](n)/[Pb(Zr(1-x(2))Ti(x(2)))O(3)](n) superlattices, with a 2n period, are simulated using an ab initio based approach. The x(1) and x(2) compositions are chosen to be located across the morphotropic phase boundary of the corresponding disordered alloys, while the (x(1)+x(2))/2 average composition lies inside this boundary. These superlattices exhibit an unusual thermodynamic phase transition sequence, including a triclinic ground state.

View Article and Find Full Text PDF

A first-principles-derived approach is used to study the effects of planar defects on structural properties of a rocksalt-ordered Pb(Sc0.5Nb0.5)O3 alloy.

View Article and Find Full Text PDF