Nanocomposite fibers based on heat-resistant amorphous polyetherimide (PEI) were prepared by twin screw melt micro-extrusion. Vapor-grown carbon nanofibers (VGCFs) and single-wall carbon nanotubes (SWCNTs) were used as fillers which helped to achieve enhanced mechanical properties. The structure and mechanical properties of such nanocomposite fibers were studied.
View Article and Find Full Text PDFElectrical conductivity, surface tension and viscosity of chitosan-based composite nanofibers are reported. 20 wt.% of chitin nanofibrils introduced into a chitosan solution leads to increase in viscosity of the mixture; the effect of shear rate becomes more pronounced.
View Article and Find Full Text PDFWe report a new type of metamaterial comprising a highly ordered 3D network of 3-7 nm lead sulfide quantum dots self-assembled in an organic matrix formed by amphiphilic ligands (oleic acid molecules). The obtained 3D superstructures possess an orthorhombic lattice with the distance between the nanocrystals as large as 10-40 nm. Analysis of self-assembly and destruction of the superstructures in time performed by a SAXS technique shows that their morphology depends on the quantity of amphiphilic ligands and width of the quantum dot size and its distribution.
View Article and Find Full Text PDFBiocompatible and bioresorbable composite fibers consisting of chitosan filled with anisotropic chitin nanofibrils with the length of 600-800 nm and cross section of about 11-12 nm as revealed by SEM and XRD were prepared by coagulation. Both chitin and chitosan components of the composite fibers displayed preferred orientations. Orientation of chitosan molecules induced by chitin nanocrystallites was confirmed by molecular modeling.
View Article and Find Full Text PDF