Superconducting hybrid structures based on single nanowires are a new type of nanoscale devices with peculiar transport characteristics. Control over the nanowire structure is essential for understanding hybrid electronic phenomena arising in such complex systems. In this work, we report a technique for the fabrication of cobalt nanowires by template-assisted electrodeposition usingcompensation, which allows revealing the fundamental dependence of the preferred direction of nanowire growth on the deposition potential.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2022
Arrays of superconducting nanowires may be useful as elements of novel nanoelectronic devices. The superconducting properties of nanowires differ significantly from the properties of bulk structures. For instance, different vortex configurations of the magnetic field have previously been predicted for nanowires with different diameters.
View Article and Find Full Text PDFMade of a thin non-superconducting metal (N) sandwiched by two superconductors (S), SNS Josephson junctions enable novel quantum functionalities by mixing up the intrinsic electronic properties of N with the superconducting correlations induced from S by proximity. Electronic properties of these devices are governed by Andreev quasiparticles (Andreev, A. 1965, 20, 1490) which are absent in conventional SIS junctions whose insulating barrier (I) between the two S electrodes owns no electronic states.
View Article and Find Full Text PDFThe critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics.
View Article and Find Full Text PDFIn pnictide RbEuFeAs, superconductivity sets in at 36 K and coexists, below 15-19 K, with the long-range magnetic ordering of Eu 4f spins. Here we report scanning tunneling experiments performed on cold-cleaved single crystals of the compound. The data revealed the coexistence of large Rb-terminated and small Eu-terminated terraces, both manifesting 1 × 2 and reconstructions.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFJosephson vortices play an essential role in superconducting quantum electronics devices. Often seen as purely conceptual topological objects, 2π-phase singularities, their observation and manipulation are challenging. Here we show that in Superconductor-Normal metal-Superconductor lateral junctions Josephson vortices have a peculiar magnetic fingerprint that we reveal in Magnetic Force Microscopy (MFM) experiments.
View Article and Find Full Text PDFIn this work, a class of metamaterials is proposed on the basis of ferromagnet/superconductor hybridization for applications in magnonics. These metamaterials comprise of a ferromagnetic magnon medium that is coupled inductively to a superconducting periodic microstructure. Spectroscopy of magnetization dynamics in such hybrid evidences formation of areas in the medium with alternating dispersions for spin wave propagation, which is the basic requirement for the development of metamaterials known as magnonic crystals.
View Article and Find Full Text PDFThe interplay between superconductivity and magnetism is one of the oldest enigmas in physics. Usually, the strong exchange field of ferromagnet suppresses singlet superconductivity via the paramagnetic effect. In EuFe(AsP), a material that becomes not only superconducting at 24.
View Article and Find Full Text PDFVortices in quantum condensates exist owing to a macroscopic phase coherence. Here we show, both experimentally and theoretically, that a quantum vortex with a well-defined core can exist in a rather thick normal metal, proximized with a superconductor. Using scanning tunneling spectroscopy we reveal a proximity vortex lattice at the surface of 50 nm-thick Cu-layer deposited on Nb.
View Article and Find Full Text PDFThe dynamics of transient current distributions in superconducting YBaCuO thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles).
View Article and Find Full Text PDFWe have investigated superlattices consisting of up to 30 epitaxial nanomultilayers (3-7 nm thick) of ferromagnetic La(2/3)Ca(1/3)MnO(3) (LCMO) and insulating SrTiO(3) (STO) hybrids. The superlattices demonstrate dramatic shifts of Curie temperature, indicating the possibility of its tunability. The metal-insulator transition (MIT) has been observed around 140 K.
View Article and Find Full Text PDF