Publications by authors named "Ignatov S"

Zn-containing TiO-based coatings with Na, Ca, Si, and K additives were obtained by plasma electrolytic oxidation (PEO) of Ti in order to achieve an effective and broad bactericidal protection without compromising biocompatibility. A protocol has been developed for cleaning the coating surface from electrolyte residues, ensuring the preservation of the microstructure and composition of the surface layer. Using high-resolution transmission electron microscopy, three characteristic microstructural zones in the PEO-Zn coating are well documented: zone 1 with a TiO-based nanocrystalline structure, zone 2 with an amorphous structure, and zone 3 around pores with an amorphous-nanocrystalline structure.

View Article and Find Full Text PDF

The emergence of new drug-resistant strains of the tuberculosis pathogen (Mtb) is a new challenge for modern medicine. Its resistance capacity is closely related to the properties of the outer membrane of the Mtb cell wall, which is a bilayer membrane formed by mycolic acids (MAs) and their derivatives. To date, the molecular mechanisms of the response of the Mtb outer membrane to external factors and, in particular, elevated temperatures have not been sufficiently studied.

View Article and Find Full Text PDF

Novel nanomaterials used for wound healing should have many beneficial properties, including high biological and antibacterial activity. Immobilization of proteins can stimulate cell migration and viability, and implanted Ag ions provide an antimicrobial effect. However, the ion implantation method, often used to introduce a bactericidal element into the surface, can lead to the degradation of vital proteins.

View Article and Find Full Text PDF

The emergence of multi-drug-resistant tuberculosis strains poses a significant challenge to modern medicine. The development of new antituberculosis drugs is hindered by the low permeability of many active compounds through the extremely strong bacterial cell wall of mycobacteria. In order to estimate the ability of potential antimycobacterial agents to diffuse through the outer mycolate membrane, the free energy profiles, the corresponding activation barriers, and possible permeability modes of passive transport for a series of known antibiotics, modern antituberculosis drugs, and prospective active drug-like molecules were determined using molecular dynamics simulations with the all-atom force field and potential of mean-force calculations.

View Article and Find Full Text PDF

Bone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence.

View Article and Find Full Text PDF

The objective of this research was to develop an environment-friendly and scalable method for the production of self-sanitizing electrospun nanofibers. This was achieved by immobilizing silver nanoparticles (Ag NPs) onto plasma-treated surfaces of biodegradable polycaprolactone (PCL) nanofibers. The plasma deposited polymer layer containing carboxyl groups played a critical role in providing a uniform distribution of Ag NPs on the nanofiber surface.

View Article and Find Full Text PDF

We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing NaHPO, Ca(OH), (NH)CO, NaSiO, CuSO, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in a mouse craniotomy model.

View Article and Find Full Text PDF

Bilayers of mycolic acids (MAs) form the outer membrane of that has high strength and extremely low permeability for external molecules (including antibiotics). For the first time, we were able to study them using the all-atom long-term molecular dynamic simulations (from 300 ns up to 1.2 μs) in order to investigate the conformational changes and most favorable structures of the mycobacterial membranes.

View Article and Find Full Text PDF

The isotropic electrostatic polarizability (IEP) of sub-nanosized magnesium clusters Mg-Mg was studied in an extensive set comprising 1237 structurally unique isomers. These isomers were found in the course of the global search for the potential energy surface minima of the magnesium clusters at the BP86/6-31G(d) level. The calculation of the polarizability at the same DFT level reveals an unexpected property of the IEP: the linear correlation between the polarizability of the most favorable isomers (and only them) and the cluster nuclearity .

View Article and Find Full Text PDF

The cell wall of and related organisms has a very complex and unusual organization that makes it much less permeable to nutrients and antibiotics, leading to the low activity of many potential antimycobacterial drugs against whole-cell mycobacteria compared to their isolated molecular biotargets. The ability to predict and optimize the cell wall permeability could greatly enhance the development of novel antitubercular agents. Using an extensive structure-permeability dataset for organic compounds derived from published experimental big data (5371 compounds including 2671 penetrating and 2700 non-penetrating compounds), we have created a predictive classification model based on fragmental descriptors and an artificial neural network of a novel architecture that provides better accuracy (cross-validated balanced accuracy 0.

View Article and Find Full Text PDF

Organic semiconductors are the focus of numerous studies; they are used in electronic devices. Modern research involves the production of neuromorphic organic materials, including those based on liquid crystal materials. The purpose of this work involves the theoretical modeling of molecules (the "core with branches" type) to construct a discotic mesophase capable of performing the functions of a neuromorphic material.

View Article and Find Full Text PDF

The spread of bacterial, fungal, and viral diseases by airborne aerosol flows poses a serious threat to human health, so the development of highly effective antibacterial, antifungal and antiviral filters to protect the respiratory system is in great demand. In this study, we developed ZnO-modified polycaprolactone nanofibers (PCL-ZnO) by treating the nanofiber surface with plasma in a gaseous mixture of Ar/CO/CH followed by the deposition of ZnO nanoparticles (NPs). The structure and chemical composition of the composite fibers were characterized by SEM, TEM, EDX, FTIR, and XPS methods.

View Article and Find Full Text PDF

The use of nanoparticles (NPs) to modify the surface of cotton fabric is a promising approach to endowing the material with a set of desirable characteristics that can significantly expand the functionality, wear comfort, and service life of textile products. Herein, two approaches to modifying the surface of hexagonal boron nitride (-BN) NPs with a hollow core and a smooth surface by treatment with maleic anhydride (MA) and diethylene triamine (DETA) were studied. The DETA and MA absorption on the surface of -BN and the interaction of surface-modified -NPs with cellulose as the main component of cotton were modeled using density functional theory with the extended Perdew-Burke-Ernzerhof functional.

View Article and Find Full Text PDF

A (series) range of potential dimorpholinoquinazoline-based inhibitors of the was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins.

View Article and Find Full Text PDF

About 9000 structures of magnesium clusters Mg ( = 2-13) generated via different methods were optimized at the DFT levels in order to estimate the number of all possible stable structures that can exist for the given cluster size (∼820,000 PES points were explored in total). It was found that the number of possible cluster isomers quickly grows with a number of atoms ; however, it is significantly lower than the number of possible nonisomorphic graph structures, which can be drawn for the given At the DFT potential energy surface, we found only 543 local minima corresponding to the isomers of Mg-Mg. The number of isomers obtained in the DFT optimizations grows with approximately as , whereas the values extrapolated to the infinite generation process grow as .

View Article and Find Full Text PDF

Utilization of antibacterial components-conjugated nanoparticles (NPs) is emerging as an attractive strategy for combating various pathogens. Herein, we demonstrate that Ag/BN NPs and antibiotic-loaded BN and Ag/BN nanoconjugates are promising carriers to fight bacterial and fungal infections. Extensive biological tests included two types of Gram-positive methicillin-resistant strains (B8469 and MW2), two types of Gram-negative strains (ATCC27853 and B1307/17), and 47 types of strains (including 41 multidrug-resistant ones), as well as five types of fungal cultures: (candidiasis-thrush) ATCC90028 and ATCC24433, ATCC90018, CBS109113, and We have demonstrated that, even within a single genus , there are many hospital strains with multi-drug resistance to different antibiotics.

View Article and Find Full Text PDF

This review presents various strategies to fight causative agents of infectious diseases. Species-specific programmable RNA-containing antibiotics open up new possibilities for creating next-generation of personalized drugs based on microbiome editing and can serve as a new tool for selective elimination of pathogenic bacterial species while keeping intact the rest of microbiota. Another promising approach in combating bacterial infections is genome editing using the CRISPR-Cas systems.

View Article and Find Full Text PDF

In recent years, bacteria inactivation during their direct physical contact with surface nanotopography has become one of the promising strategies for fighting infection. Contact-killing ability has been reported for several nanostructured surfaces, e.g.

View Article and Find Full Text PDF

The glycoconjugates with BSA (bovine serum albumin) were synthesized using a next saccharide: disaccharide derivative M.leprae PGL-1 (phenolic glycolipid-1); a complex of the disaccharide fragment and the branched hexasaccharide fragment LAM (lipoarabinomannan); diarabinofuranose fragment LAM. These glycoconjugates were used as antigenic components for leprosy rapid serotest construction in immunochromatographic format (leprosy LF serotest).

View Article and Find Full Text PDF

A rapid increase in the number of antibiotic-resistant bacteria urgently requires the development of new more effective yet safe materials to fight infection. Herein, we uncovered the contribution of different metal nanoparticles (NPs) (Pt, Fe, and their combination) homogeneously distributed over the surface of nanostructured TiCaPCON films in the total antibacterial activity toward eight types of clinically isolated bacterial strains ( K261, B1079k/17-3, B1280A/17, no. 839, i5189-1, Ya-235: VanA, I-237: VanA, and U20) taking into account various factors that can affect bacterial mechanisms: surface chemistry and phase composition, wettability, ion release, generation of reactive oxygen species (ROS), potential difference and polarity change between NPs and the surrounding matrix, formation of microgalvanic couples on the sample surfaces, and contribution of a passive oxide layer, formed on the surface of films, to general kinetics of the NP dissolution.

View Article and Find Full Text PDF

The process of dissolution of chitosan nanocrystals with molecular mass of polymer up to 12.8 kDa in aqueous media of various pH was studied by molecular dynamic simulations with the use of the improved force field GROMOS 56A specially developed for the chitosan polymers description. The effect of the media acidity and polymer molecular weight on the dissolution process kinetics has been studied and the regression expressions for kinetic parameters were established.

View Article and Find Full Text PDF

Background: Atopic bronchial asthma (BA) in children is associated with upper airways pathology (UAP). Among them, a combination of allergic rhinitis (AR) and nasal obstructive disorders (NOD), including hypertrophy of the pharyngeal tonsil (HPT) and anomalies of the intranasal structures (AINS), is abundant. In such patients, anterior active rhinomanometry (AARM) is an important method of examining nasal patency.

View Article and Find Full Text PDF

Photolithography methods offer ample opportunities for creating biological surface patterns over large areas. Herein, samples with patterned surface having the same Ag total coverage area and content, but different surface topography made of periodically spaced Ag/Si pillars with a diameter of 10 and 50 μm and a height of 3, 1, and 0.2 μm were produced by photolithography technique and studied to uncover the dependences of bactericide ion release on surface topography and antibacterial effect on Ag ion concentration.

View Article and Find Full Text PDF

It is very important to prevent bacterial colonization at the early postoperative stages. There are four major strategies and their corresponding types of antibacterial surfaces specifically designed to fight infection: bactericide release, anti-adhesion, pH-sensitive, and contact-killing. Herein, we aimed at determining the antibacterial efficiency of different types of bactericidal ions and revealing the possible contribution of surface microgalvanic effects arising from a potential difference on heterogeneous surfaces.

View Article and Find Full Text PDF

Allergic rhinitis (AR) and allergic rhinosinusitis (ARS) are typical upper airway pathologies (UAP) in children with bronchial asthma (BA) frequently accompanied with nasal obstructive diseases (NOD). In order to establish the effect of NOD on correlations between nasal and synonasal symptoms with clinical assessments of asthma control, 82 children, 9.8 [8.

View Article and Find Full Text PDF