Pancreatic ductal adenocarcinoma (PDAC) poses a significant threat due to its tendency to evade early detection, frequent metastasis, and the subsequent challenges in devising effective treatments. Processes that govern epithelial-mesenchymal transition (EMT) in PDAC hold promise for advancing novel therapeutic strategies. SAMD1 (SAM domain-containing protein 1) is a CpG island-binding protein that plays a pivotal role in the repression of its target genes.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a hematological malignancy characterized by abnormal proliferation and accumulation of immature myeloid cells in the bone marrow. Inflammation plays a crucial role in AML progression, but excessive activation of cell-intrinsic inflammatory pathways can also trigger cell death. IRF2BP2 is a chromatin regulator implicated in AML pathogenesis, although its precise role in this disease is not fully understood.
View Article and Find Full Text PDFBackground: Loss of the p53-inducible in p53-proficient CRC cell lines results in increased sensitivity to DNA-damaging chemotherapeutics. Here, we comprehensively analyze how affects the p53-induced transcriptional program.
Methods: Using a CRISPR/Cas9-approach, we deleted the p53 binding site in the promoter of SW480 colorectal cancer cells and subjected them to RNA-Seq analysis after the activation of ectopic p53.
Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity biotinylation method targeting the RNA and proteins constituents.
View Article and Find Full Text PDFMuscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis.
View Article and Find Full Text PDFBacteria overcome ribosome stalling by employing translation elongation factor P (EF-P), which requires post-translational modification (PTM) for its full activity. However, EF-Ps of the PGKGP subfamily are unmodified. The mechanism behind the ability to avoid PTM while retaining active EF-P requires further examination.
View Article and Find Full Text PDFCellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation.
View Article and Find Full Text PDFOxygen (O2) concentrations have recently been discussed as important regulators of ovarian cells. Human IVF-derived granulosa cells (human GCs) can be maintained in vitro and are a widely used cellular model for the human ovary. Typically, GCs are cultured at atmospheric O2 levels (approximately around 20%), yet the O2 conditions in vivo, especially in the preovulatory follicle, are estimated to be much lower.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2023
Fusaric acid (FA) is an important virulence factor produced by several species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms.
View Article and Find Full Text PDFProteins involved in cellular metabolism and molecular regulation can extend lifespan of various organisms in the laboratory. However, any improvement in aging would only provide an evolutionary benefit if the organisms were able to survive under non-ideal conditions. We have previously shown that Drosophila melanogaster carrying a loss-of-function allele of the acetyltransferase chameau (chm) has an increased healthy lifespan when fed ad libitum.
View Article and Find Full Text PDFThe PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown.
View Article and Find Full Text PDFThe use of synthetic chemicals to selectively interfere with chromatin and the chromatin-bound proteome represents a great opportunity for pharmacological intervention. Recently, synthetic foldamers that mimic the charge surface of double-stranded DNA have been shown to interfere with selected protein-DNA interactions. However, to better understand their pharmacological potential and to improve their specificity and selectivity, the effect of these molecules on complex chromatin needs to be investigated.
View Article and Find Full Text PDFThe largest subunit of RNA polymerase (Pol) II harbors an evolutionarily conserved C-terminal domain (CTD), composed of heptapeptide repeats, central to the transcriptional process. Here, we analyze the transcriptional phenotypes of a CTD-Δ5 mutant that carries a large CTD truncation in human cells. Our data show that this mutant can transcribe genes in living cells but displays a pervasive phenotype with impaired termination, similar to but more severe than previously characterized mutations of CTD tyrosine residues.
View Article and Find Full Text PDFInhibition of protein-protein interactions (PPIs) via designed peptides is an effective strategy to perturb their biological functions. The Elongin BC heterodimer (ELOB/C) binds to a BC-box motif and is essential for cancer cell growth. Here, we report a peptide that mimics the high-affinity BC-box of the PRC2-associated protein EPOP.
View Article and Find Full Text PDFDNA-protein crosslinks (DPCs) are pervasive DNA lesions that are induced by reactive metabolites and various chemotherapeutic agents. Here, we develop a technique for the Purification of x-linked Proteins (PxP), which allows identification and tracking of diverse DPCs in mammalian cells. Using PxP, we investigate DPC repair in cells genetically-engineered to express variants of the SPRTN protease that cause premature ageing and early-onset liver cancer in Ruijs-Aalfs syndrome patients.
View Article and Find Full Text PDFApicomplexa are obligate intracellular parasites. While most species are restricted to specific hosts and cell types, Toxoplasma gondii can invade every nucleated cell derived from warm-blooded animals. This broad host range suggests that this parasite can recognize multiple host cell ligands or structures, leading to the activation of a central protein complex, which should be conserved in all apicomplexans.
View Article and Find Full Text PDFData-independent acquisition (DIA) of tandem mass spectrometry spectra has emerged as a promising technology to improve coverage and quantification of proteins in complex mixtures. The success of DIA experiments is dependent on the quality of spectral libraries used for data base searching. Frequently, these libraries need to be generated by labor and time intensive data dependent acquisition (DDA) experiments.
View Article and Find Full Text PDFThe lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners.
View Article and Find Full Text PDFThe reversible attachment of ubiquitin governs the interaction, activity and degradation of proteins whereby the type and target of this conjugation determine the biological response. The investigation of this complex and multi-faceted protein ubiquitination mostly relies on painstaking biochemical analyses. Here, we employ recombinant binding domains to probe the ubiquitination of proteins in living cells.
View Article and Find Full Text PDFSignaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging.
View Article and Find Full Text PDFBackground: Amino acid metabolism is crucial for inflammatory processes during atherogenesis. The endogenous amino acid homoarginine is a robust biomarker for cardiovascular outcome and mortality with high levels being protective. However, the underlying mechanisms remain elusive.
View Article and Find Full Text PDFIn the ovary, proliferation and differentiation of granulosa cells (GCs) drive follicular growth. Our immunohistochemical study in a non-human primate, the Rhesus monkey, showed that the mitochondrial activity marker protein cytochrome c oxidase subunit 4 (COX4) increases in GCs in parallel to follicle size, and furthermore, its intracellular localization changes. This suggested that there is mitochondrial biogenesis and trafficking, and implicates the actions of gonadotropins, which regulate follicular growth and ovulation.
View Article and Find Full Text PDF