Angiogenesis, the growth of capillaries from pre-existing ones, plays a key role in cancer progression. Tumours release tumour angiogenic factors (TAFs) into the extracellular matrix (ECM) that trigger angiogenesis once they reach the vasculature. The neovasculature provides nutrients and oxygen to the tumour.
View Article and Find Full Text PDFJ R Soc Interface
January 2017
Cancerous tumours have the ability to recruit new blood vessels through a process called angiogenesis. By stimulating vascular growth, tumours get connected to the circulatory system, receive nutrients and open a way to colonize distant organs. Tumour-induced vascular networks become unstable in the absence of tumour angiogenic factors (TAFs).
View Article and Find Full Text PDFTumor angiogenesis, the growth of new capillaries from preexisting ones promoted by the starvation and hypoxia of cancerous cell, creates complex biological patterns. These patterns are captured by a hybrid model that involves high-order partial differential equations coupled with mobile, agent-based components. The continuous equations of the model rely on the phase-field method to describe the intricate interfaces between the vasculature and the host tissue.
View Article and Find Full Text PDF