Publications by authors named "Ignasi Batlle"

Almond breeding is increasingly focusing on kernel quality. However, unlike other agronomic traits, the genetic basis of physical and chemical kernel quality traits has been poorly investigated. To address this gap, we conducted a QTL mapping of these traits to enhance our understanding of their genetic control.

View Article and Find Full Text PDF

Peach is a model for genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a complex task. A gene coexpression network (GCN) capable of capturing stable gene-gene relationships would help researchers overcome the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created four GCNs from 604 Illumina RNA-Seq libraries.

View Article and Find Full Text PDF
Article Synopsis
  • Domestication has significantly shaped almond crop genomes, leading to the identification of specific alleles and diverse genetic populations through genome-wide association studies (GWASs).
  • A genetic analysis of 243 almond accessions revealed five ancestral groups, notably one comprising solely Spanish accessions, aligning with historical almond distribution patterns across regions like Asia and the Mediterranean.
  • The study identified 13 quantitative trait loci (QTLs) related to almond characteristics (nut weight, crack-out percentage, etc.), with candidate genes proposed for several QTLs, contributing valuable insights for future almond breeding efforts.
View Article and Find Full Text PDF

Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes. However, in almond, little is known about the genetic variability in current breeding stocks, although several cases of inbreeding depression have been reported. To gain insights into the genetic structure in modern breeding programs worldwide, marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed.

View Article and Find Full Text PDF

Red leaf blotch (RLB) of almond, caused by , is an important foliar disease of this nut tree in the Mediterranean basin and Middle East regions. In recent years, the incidence of this disease has increased in Spain, corresponding to increases in the area of newly planted orchards and the use of susceptible cultivars. In 2009, an experimental orchard including 21 almond cultivars was planted at Les Borges Blanques, Lleida, in northeastern Spain.

View Article and Find Full Text PDF

Bitterness in almonds is controlled by a single gene ( dominant for sweet kernel, recessive for bitter kernel) and the proportions of the offspring genotypes (, , ) depend on the progenitors' genotype. Currently, the latter is deduced after crossing by recording the phenotype of their descendants through kernel tasting. Chemical markers to early identify parental genotypes related to bitter traits can significantly enhance the efficiency of almond breeding programs.

View Article and Find Full Text PDF

Peach (Prunus persica) and almond (Prunus dulcis) are two sexually compatible species that produce fertile offspring. Almond, a highly polymorphic species, is a potential source of new genes for peach that has a strongly eroded gene pool. Here we describe the genetics of a male sterile phenotype that segregated in two almond ('Texas') × peach ('Earlygold') progenies: an F2 (T×E) and a backcross one (T1E) to the 'Earlygold' parent.

View Article and Find Full Text PDF

As part of the almond breeding programme at IRTA, we investigated the S genotypes of several cultivars using a combination of RNase zymograms, testcrosses, pollen-tube growth analysis and molecular identification by PCR analysis. For some of the cultivars examined, discrepancies appeared between their S alleles as reported in the literature and those found in this investigation, leading to a re-evaluation of their S genotypes. Analysis of the stylar ribonucleases (RNases), which are known to correlate with S alleles, of cvs.

View Article and Find Full Text PDF