Publications by authors named "Ignacio Trucillo-Silva"

Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023 the first open-to-the-public Genomes to Fields (G2F) initiative Genotype by Environment (GxE) prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements and field management notes, gathered by the project over nine years.

View Article and Find Full Text PDF
Article Synopsis
  • - Predicting how genetic and environmental factors influence traits (phenotypes) is a critical challenge in biology, with potential benefits like improved health, food security, and environmental care.
  • - The Genomes to Fields (G2F) initiative hosted a competition in 2022 and 2023, inviting global participants from various disciplines to develop models using a comprehensive dataset gathered over nine years, including genetic and environmental data.
  • - Winning methods combined machine learning with traditional breeding techniques, showcasing a variety of approaches such as quantitative genetics and deep learning, indicating that no single strategy was universally superior in predicting phenotypes in this context.
View Article and Find Full Text PDF

Intracellular factors differentially affected enzyme activities of N assimilation in the roots of maize testcrosses where alanine aminotransferase and glutamate synthase were the main enzymes regulating the levels of glutamate. N is a key macronutrient for plant growth and development. Breeding maize with improved efficiency in N use could help reduce environmental contamination as well as increase profitability for the farmers.

View Article and Find Full Text PDF

Aside from the identification of 32 QTL for N metabolism in the seedling leaves of a maize testcross population, alanine aminotransferase was found to be a central enzyme in N assimilation. Excessive application of nitrogen (N) fertilizer to grow commercial crops like maize is a cause of concern because of the runoff of excess N into streams and rivers. Breeding maize with improved N use efficiency (NUE) would reduce environmental pollution as well as input costs for the farmers.

View Article and Find Full Text PDF

Exploring and understanding the genetic basis of cob biomass in relation to grain yield under varying nitrogen management regimes will help breeders to develop dual-purpose maize. With rising energy demands and costs for fossil fuels, alternative energy from renewable sources such as maize cobs will become competitive. Maize cobs have beneficial characteristics for utilization as feedstock including compact tissue, high cellulose content, and low ash and nitrogen content.

View Article and Find Full Text PDF