Control of molecular reaction dynamics with laser pulses has been developed in the last decades. Among the different magnitudes whose control has been actively pursued, the branching ratio between different product channels constitutes the clearest signature of quantum control. In polyatomic molecules, the dynamics in the excited state is quagmired by non-adiabatic couplings, which are not directly affected by the laser, making control over the branching ratio a very demanding challenge.
View Article and Find Full Text PDFJ Phys Chem Lett
February 2024
By coherent control, the yield of photodissociation reactions can be maximized, starting in a suitable superposition of vibrational states. In ultrafast processes, the interfering pathways are born from the early vibrational coherences in the ground electronic potential. We interpret their effect from a purely classical picture, in which the correlation between the initial position and momentum helps to synchronize the vibrational dynamics at the Franck-Condon window when the pulse is at its maximum intensity.
View Article and Find Full Text PDFBy controlling the temporal and spatial features of light, we propose a novel protocol to prepare two-qubit entangling gates on atoms trapped at close distance, which could potentially speed up the operation of the gate from the sub-micro to the nanosecond scale. The protocol is robust to variations in the pulse areas and the position of the atoms, by virtue of the coherent properties of a dark state, which is used to drive the population through Rydberg states. From the time-domain perspective, the protocol generalizes the one proposed by Jaksch and coworkers [Jaksch , , 2000, , 2208], with three pulses that operate symmetrically in time, but with different pulse areas.
View Article and Find Full Text PDFIn the presence of strong electric fields, the excited states of single-electron molecules and molecules with large transient dipoles become unstable because of anti-alignment, the rotation of the molecular axis perpendicular to the field vector, where bond hardening is not possible. We show how to overcome this problem by using circularly polarized electromagnetic fields. Using a full quantum description of the electronic, vibrational, and rotational degrees of freedom, we characterize the excited electronic state dressed by the field and analyze its dependence on the bond length and angle and the stability of its vibro-rotational eigenstates.
View Article and Find Full Text PDFWe develop two novel models of the H2+ molecule and its isotopes from which we assess quantum-mechanically and semi-classically whether the molecule anti-aligns with the field in the first excited electronic state. The results from both models allow us to predict anti-alignment dynamics even for the HD+ isotope, which possesses a permanent dipole moment. The molecule dissociates at angles perpendicular to the field polarization in both the excited and the ground electronic state, as the population is exchanged through a conical intersection.
View Article and Find Full Text PDFWe predict anti-alignment dynamics in the excited state of H or related homonuclear dimers in the presence of a strong field. This effect is a general indirect outcome of the strong transition dipole and large polarizabilities typically used to control or to induce alignment in the ground state. In the excited state, however, the polarizabilities have the opposite sign compared to those in the ground state, generating a torque that aligns the molecule perpendicular to the field, deeming any laser-control strategy impossible.
View Article and Find Full Text PDFWe describe the first clinical case in the reviewed literature of a patient with a complicated renal cyst by fistula of an appendicular neoplasm with acute appendicitis, as well as the management performed and the therapeutic options in similar cases.
View Article and Find Full Text PDFA comparative study of the ultrafast photodissociation dynamics of the dihalomethanes CH2ICl and CH2BrI has been carried out at 268 nm, around the maximum of the first absorption band, employing femtosecond velocity map ion imaging in conjunction with high level ab initio electronic structure calculations and full dimension on-the-fly trajectory calculations including surface hopping. Total translational energy distributions and angular distributions of the iodine fragments as well as reaction times for the C-I bond cleavage are presented and discussed along with the computed absorption spectra, potential energy curves and trajectories. The revealed dynamics is mainly governed by absorption to the 5A' state for CH2BrI while two dissociation pathways, through the 4A' or 5A' states, are in competition for CH2lCI.
View Article and Find Full Text PDFJ Phys Chem A
November 2017
We study laser-driven isomerization reactions through an excited electronic state using the recently developed Geometrical Optimization procedure. Our goal is to analyze whether an initial wave packet in the ground state, with optimized amplitudes and phases, can be used to enhance the yield of the reaction at faster rates, driven by a single picosecond pulse or a pair of femtosecond pulses resonant with the electronic transition. We show that the symmetry of the system imposes limitations in the optimization procedure, such that the method rediscovers the pump-dump mechanism.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2016
We find a new mechanism of electronic population inversion using strong femtosecond pulses, where the transfer is mediated by vibrational motion on a light-induced potential. The process can be achieved with a single pulse tuning its frequency to the red of the Franck-Condon window. We show the determinant role that the gradient of the transition dipole moment can play on the dynamics, and extend the method to multiphoton processes with odd number of pulses.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2016
Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.
View Article and Find Full Text PDFIntroduction: Over the last 2 decades, there has been a major increase in active surveillance (AS) as a therapeutic alternative in urological tumors regarded to be of low risk. Owing to the findings of significant clinical outcomes in our series, this report presents an update of our AS program in patients with recurrent non-muscle-invasive bladder tumor. The objective was to confirm the oncological long-term safety of this protocol and to determine possible variables associated with progression.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2015
We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g.
View Article and Find Full Text PDFQuantum systems with sublevel structures, like molecules, prevent full population inversion from one manifold of sublevels to the other using ultrafast resonant pulses. We explain the mechanism by which this population transfer is blocked. We then develop a novel concept of geometric control, assuming full or partial coherent manipulation within the manifolds, and show that by preparing specific coherent superpositions in the initial manifold, full population inversion or full population blockade, that is, laser transparency, can be achieved.
View Article and Find Full Text PDFWe theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds.
View Article and Find Full Text PDFStrong ultrashort laser pulses have opened new avenues for the manipulation of photochemical processes like photoisomerization or photodissociation. The presence of light intense enough to reshape the potential energy surfaces may steer the dynamics of both electrons and nuclei in new directions. A controlled laser pulse, precisely defined in terms of spectrum, time and intensity, is the essential tool in this type of approach to control chemical dynamics at a microscopic level.
View Article and Find Full Text PDFIntroduction: Outcome data of penile traction therapy (PTT) for the acute phase (AP) of Peyronie's disease (PD) have not been specifically studied.
Aim: The aim of this study was to assess the effectiveness of a penile extender device for the treatment of patients with AP of PD.
Methods: A total of 55 patients underwent PTT for 6 months and were compared with 41 patients with AP of PD who did not receive active treatment ("no intervention group" [NIG]).
We propose a scheme to generate electric dipole moments in homonuclear molecular cations by creating, with an ultrashort pump pulse, a quantum superposition of vibrational states on electronic states strongly perturbed by very strong static electric fields. By field-induced molecular stabilization, the dipoles can reach values as large as 50 Debyes and oscillate on a time-scale comparable to that of the slow vibrational motion. We show that both the electric field and the pump pulse parameters can be used to control the amplitude and period of the oscillation, while preventing the molecule from ionizing or dissociating.
View Article and Find Full Text PDFA laser-adiabatic manipulation of the bond (LAMB) scheme using moderately intense fields is proposed to induce and control large-amplitude oscillations in nuclear wave packets. The present scheme involves an ultrashort UV pump pulse to initially create a wave packet in an excited electronic state of the hydrogen molecular ion and a low-frequency control pulse, which is switched on after a given time, leading to controllable vibrational trapping. The choice of H2(+) as the target exploits the larger dipole values that molecular ions present as the internuclear distance increases.
View Article and Find Full Text PDFAb initio molecular dynamics including nonadiabatic and spin-orbit couplings on equal footing is used to unravel the deactivation of cytosine after UV light absorption. Intersystem crossing (ISC) is found to compete directly with internal conversion in tens of femtoseconds, thus making cytosine the organic compound with the fastest triplet population calculated so far. It is found that close degeneracy between singlet and triplet states can more than compensate for very small spin-orbit couplings, leading to efficient ISC.
View Article and Find Full Text PDFExtending the Shin-Metiu two-electron Hamiltonian, we construct a new Hamiltonian with effective singlet-triplet couplings. The Born-Oppenheimer electronic potentials and couplings are obtained for different parameters, and the laser-free dynamics is calculated with the full Hamiltonian and in the adiabatic limit. We compare the dynamics of the system using nuclear wave packets for different numbers of Born-Oppenheimer potentials and vibronic wave packets on a full 3-dimensional (two electron coordinates plus one nuclear coordinate) grid.
View Article and Find Full Text PDF