Publications by authors named "Ignacio Sarasua"

In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients.

View Article and Find Full Text PDF

International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution.

View Article and Find Full Text PDF

Deep learning offers a powerful approach for analyzing hippocampal changes in Alzheimer's disease (AD) without relying on handcrafted features. Nevertheless, an input format needs to be selected to pass the image information to the neural network, which has wide ramifications for the analysis, but has not been evaluated yet. We compare five hippocampal representations (and their respective tailored network architectures) that span from raw images to geometric representations like meshes and point clouds.

View Article and Find Full Text PDF

We introduce deep neural networks for the analysis of anatomical shapes that learn a low-dimensional shape representation from the given task, instead of relying on hand-engineered representations. Our framework is modular and consists of several computing blocks that perform fundamental shape processing tasks. The networks operate on unordered point clouds and provide invariance to similarity transformations, avoiding the need to identify point correspondences between shapes.

View Article and Find Full Text PDF

Fully Convolutional Neural Networks (F-CNNs) achieve state-of-the-art performance for segmentation tasks in computer vision and medical imaging. Recently, computational blocks termed squeeze and excitation (SE) have been introduced to recalibrate F-CNN feature maps both channel- and spatial-wise, boosting segmentation performance while only minimally increasing the model complexity. So far, the development of SE blocks has focused on 2D architectures.

View Article and Find Full Text PDF

The rivers and streams of the world are becoming saltier due to human activities. In spite of the potential damage that salt pollution can cause on freshwater ecosystems, this is an issue that is currently poorly managed. Here we explored intraspecific differences in the sensitivity of freshwater fauna to two major ions (Cl(-) and SO4(2-)) using the net-spinning caddisfly Hydropsyche exocellata Dufour 1841 (Trichoptera, Hydropsychidae) as a model organism.

View Article and Find Full Text PDF