The central nervous system (CNS) has long been considered an immune-privileged site, with minimal interaction between immune cells, particularly of the adaptive immune system. Previously, the presence of immune cells in this organ was primarily linked to events involving disruption of the blood-brain barrier (BBB) or inflammation. However, current research has shown that immune cells are found patrolling CNS under homeostatic conditions.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) have recently emerged as strong therapies for a broad spectrum of cancers being the first-line treatment for many of them, even improving the prognosis of malignancies that were considered untreatable. This therapy is based on the administration of monoclonal antibodies targeting inhibitory T-cell receptors, which boost the immune system and prevent immune evasion. However, non-specific T-cell de-repression can result in a wide variety of immune-related adverse events (irAEs), including gastrointestinal, endocrine, and dermatologic, with a smaller proportion of these having the potential for fatal outcomes such as neurotoxicity, pulmonary toxicity, and cardiotoxicity.
View Article and Find Full Text PDF