Purpose: Positron emission tomography (PET) imaging of mutant huntingtin (mHTT) aggregates is a potential tool to monitor disease progression as well as the efficacy of candidate therapeutic interventions for Huntington's disease (HD). To date, the focus has been mainly on the investigation of C radioligands; however, favourable F radiotracers will facilitate future clinical translation. This work aimed at characterising the novel [F]CHDI-650 PET radiotracer using a combination of in vivo and in vitro approaches in a mouse model of HD.
View Article and Find Full Text PDFBackground: Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF).
View Article and Find Full Text PDFHuntington's disease (HD) is a progressive neurodegenerative disease affecting motor and cognitive abilities. Multiple studies have found white matter anomalies in HD-affected humans and animal models of HD. The identification of sensitive white-matter-based biomarkers in HD animal models will be important in understanding disease mechanisms and testing the efficacy of therapeutic interventions.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin () gene. We report the design of a series of pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of mRNA transcripts and protein levels.
View Article and Find Full Text PDFHuntington disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (CAG) trinucleotide expansion in the huntingtin () gene that encodes the mutant huntingtin protein (mHTT). Visualization and quantification of cerebral mHTT will provide a proxy for target engagement and a means to evaluate therapeutic interventions aimed at lowering mHTT in the brain. Here, we validated the novel radioligand C-labeled 6-(5-((5-methoxypyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one (C-CHDI-180R) using PET imaging to quantify cerebral mHTT aggregates in a macaque model of HD.
View Article and Find Full Text PDFHuntington's disease (HD) is a neurodegenerative disorder caused by expanded (≥ 40) glutamine-encoding CAG repeats in the huntingtin gene, which leads to dysfunction and death of predominantly striatal and cortical neurons. While the genetic profile and clinical signs and symptoms of the disease are better known, changes in the functional architecture of the brain, especially before the clinical expression becomes apparent, are not fully and consistently characterized. In this study, we sought to uncover functional changes in the brain in the heterozygous (HET) zQ175 delta-neo (DN) mouse model at 3, 6, and 10 months of age, using resting-state functional magnetic resonance imaging (RS-fMRI).
View Article and Find Full Text PDFHuntington's disease is an autosomal, dominantly inherited neurodegenerative disease caused by an expansion of the CAG repeats in exon 1 of the huntingtin gene. Neuronal degeneration and dysfunction that precedes regional atrophy result in the impairment of striatal and cortical circuits that affect the brain's large-scale network functionality. However, the evolution of these disease-driven, large-scale connectivity alterations is still poorly understood.
View Article and Find Full Text PDFHuntington disease is a highly disabling neurodegenerative disease characterized by psychiatric, cognitive, and motor deficits. The causal genetic mutation in huntingtin (Htt, also known as IT15), located on chromosome 4p16.3, leads to an expansion of a triplet coding for polyglutamine.
View Article and Find Full Text PDFTherapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients.
View Article and Find Full Text PDFWe have developed an inducible Huntington's disease (HD) mouse model that allows temporal control of whole-body allele-specific mutant huntingtin (mHtt) expression. We asked whether moderate global lowering of mHtt (~50%) was sufficient for long-term amelioration of HD-related deficits and, if so, whether early mHtt lowering (before measurable deficits) was required. Both early and late mHtt lowering delayed behavioral dysfunction and mHTT protein aggregation, as measured biochemically.
View Article and Find Full Text PDFPurpose: Huntington's disease is caused by a trinucleotide expansion in the HTT gene, which leads to aggregation of mutant huntingtin (mHTT) protein in the brain and neurotoxicity. Direct in vivo measurement of mHTT aggregates in human brain parenchyma is not yet possible. In this first-in-human study, we investigated biodistribution and dosimetry in healthy volunteers of [C]CHDI-00485180-R ([C]CHDI-180R) and [C]CHDI-00485626 ([C]CHDI-626), two tracers designed for PET imaging of aggregated mHTT in the brain that have been validated in preclinical models.
View Article and Find Full Text PDFWhile blood-brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington's disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls.
View Article and Find Full Text PDFThe Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor.
View Article and Find Full Text PDFHuntington's disease is the most frequent autosomal dominant neurodegenerative disorder; however, no disease-modifying interventions are available for patients with this disease. The molecular pathogenesis of Huntington's disease is complex, with toxicity that arises from full-length expanded huntingtin and N-terminal fragments of huntingtin, which are both prone to misfolding due to proteolysis; aberrant intron-1 splicing of the HTT gene; and somatic expansion of the CAG repeat in the HTT gene. Potential interventions for Huntington's disease include therapies targeting huntingtin DNA and RNA, clearance of huntingtin protein, DNA repair pathways, and other treatment strategies targeting inflammation and cell replacement.
View Article and Find Full Text PDFAlterations in synaptic vesicle glycoprotein 2 A (SV2A) have been associated with several neuropsychiatric and neurodegenerative disorders. Therefore, SV2A positron emission tomography (PET) imaging may provide a unique tool to investigate synaptic density dynamics during disease progression and after therapeutic intervention. This study aims to extensively characterize the novel radioligand [F]SynVesT-1 for preclinical applications.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by an expansion of the CAG trinucleotide repeat domain in the huntingtin gene that results in expression of a mutant huntingtin protein (mHTT) containing an expanded polyglutamine tract in the amino terminus. A number of therapeutic approaches that aim to reduce mHTT expression either locally in the CNS or systemically are in clinical development. We have previously described sensitive and selective assays that measure human HTT proteins either in a polyglutamine-independent (detecting both mutant expanded and non-expanded proteins) or in a polyglutamine length-dependent manner (detecting the disease-causing polyglutamine repeats) on the electrochemiluminescence Meso Scale Discovery detection platform.
View Article and Find Full Text PDFHuntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin () gene that encodes the pathologic mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) tract. Whereas several therapeutic programs targeting mHTT expression have advanced to clinical evaluation, methods to visualize mHTT protein species in the living brain are lacking. Here, we demonstrate the development and characterization of a positron emission tomography (PET) imaging radioligand with high affinity and selectivity for mHTT aggregates.
View Article and Find Full Text PDFPurpose: As several therapies aimed at lowering mutant huntingtin (mHTT) brain levels in Huntington's disease (HD) are currently being investigated, noninvasive positron emission tomography (PET) imaging of mHTT could be utilized to directly evaluate therapeutic efficacy and monitor disease progression. Here we characterized and longitudinally assessed the novel radioligand [C]CHDI-626 for mHTT PET imaging in the zQ175DN mouse model of HD.
Methods: After evaluating radiometabolites and radioligand kinetics, we conducted longitudinal dynamic PET imaging at 3, 6, 9, and 13 months of age (M) in wild-type (WT, n = 17) and heterozygous (HET, n = 23) zQ175DN mice.
Huntington's disease (HD) results from an expansion mutation in the polyglutamine tract in huntingtin. Although huntingtin is ubiquitously expressed in the body, the striatum suffers the most severe pathology. Rhes is a Ras-related small GTP-binding protein highly expressed in the striatum that has been reported to modulate mTOR and sumoylation of mutant huntingtin to alter HD mouse model pathogenesis.
View Article and Find Full Text PDFSynaptic dysfunction is a primary mechanism underlying Huntington disease (HD) progression. This study investigated changes in synaptic vesicle glycoprotein 2A (SV2A) density by means of C-UCB-J small-animal PET imaging in the central nervous system of mice with HD. Dynamic C-UCB-J small-animal PET imaging was performed at clinically relevant disease stages (at 3, 7, 10, and 16 mo) in the heterozygous knock-in Q175DN mouse model of HD and wild-type littermates (16-18 mice per genotype and time point).
View Article and Find Full Text PDFHuntington's disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents.
View Article and Find Full Text PDFThe disposition of a novel kynurenine monooxygenase inhibitor, CHDI-340246, was investigated and in animals., there was minimal metabolic turnover of CHDI-340246 in all species. The protein binding was higher in human plasma (99.
View Article and Find Full Text PDFHDinHD (Huntington's Disease in High Definition; HDinHD.org) is an open online portal for the HD research community that presents a synthesized view of HD-related scientific data. Here, we present a broad overview of HDinHD and highlight the newly launched HDinHD Explorer tool that enables researchers to discover and explore a wide range of diverse yet interconnected HD-related data.
View Article and Find Full Text PDFThe expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain.
View Article and Find Full Text PDFOur group has recently shown that brain-penetrant ataxia telangiectasia-mutated (ATM) kinase inhibitors may have potential as novel therapeutics for the treatment of Huntington's disease (HD). However, the previously described pyranone-thioxanthenes (e.g.
View Article and Find Full Text PDF