Fluorescent probes for the detection of intracellular nitric oxide (NO) are abundant, but those targeted to the mitochondria are scarce. Among those molecules targeting mitochondrial NO (mNO), the majority use a triphenylphosphonium (TPP) cation as a vector to reach such organelles. Here we describe a simple molecule (mtNOpy) based on the pyrylium structure, made in a few synthetic steps, capable of detecting selectively NO (aerated medium) over other reactive species.
View Article and Find Full Text PDFEight styrylpyrylium tetrafluoroborate salts have been synthesized and fully optically characterized by UV-vis absorption and fluorescence steady-state/time-resolved spectroscopies. The new dyes exhibit strong emission bands with yellow-orange colours, depending on the substituents present in the structure. Notably, the Stokes shift recorded for some of them exceeds 100 nm, a very valuable feature for biological imaging.
View Article and Find Full Text PDFFour formulations have been used to produce different poly(2-hydroxyethyl methacrylate) (PHEMA) thin films, containing singlet oxygen photosensitizer Rose Bengal (). The polymers have been characterized employing Thermogravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and UV-vis Absorption Spectroscopy. When irradiated with white light (400-700 nm) films generated singlet oxygen (O), as demonstrated by the reactivity with O trap 9,10-dimethylanthracene ().
View Article and Find Full Text PDFThree new photoactive polymeric materials embedding a hexanuclear molybdenum cluster (BuN)[MoI(CHCOO)] () have been synthesized and characterized by means of Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and emission spectroscopy. The materials are obtained in the format of transparent and thin sheets, and the formulations used to synthesize them are comprised of 2-hydroxyethyl methacrylate (HEMA), as a polymerizable monomer, and ethylene glycol dimethacrylate (EGDMA) or poly(ethylene glycol)dimethacrylate (PEGDMA), as cross-linkers. All the polymeric hydrogels generate singlet oxygen (O) upon irradiation with visible light (400-700 nm), as demonstrated by the reactivity toward two chemical traps of this reactive species (9,10-dimethylanthracene and 1,5-dihydroxynaphthalene).
View Article and Find Full Text PDFTwo new photoactive materials have been prepared, characterized and tested against Pseudomonas aeruginosa bacteria (planktonic suspension). The synthesis of the polymeric photosensitizers can be made at a multigram scale, in few minutes, starting from inexpensive and readily available materials, such as Rose Bengal (photosensitizer) and ion exchange resins Amberlite® IRA 900 (macroporous) or IRA 400 (gel-type) as cationic polystyrene supports. The most notable feature of these systems is their notable bactericidal activity in the dark (4-5 log CFU/mL reduction of the population of P.
View Article and Find Full Text PDFThe gelation properties and mode of self-assembly of six asymmetrical hexaether triphenylene derivatives mono-functionalized with carboxylic and primary amine groups were investigated. The presence of a carboxylic and amine group attached to the triphenylene core generated stable, thermo- and pH-sensitive supramolecular π-organogels with a reversible response to both stimuli. In order to understand the gelation process, we studied the effect of the spacer length and found a different gelation scope for the acid and basic derivatives that accounts for a different supramolecular self-assembly.
View Article and Find Full Text PDF