Background: Adverse environmental conditions during intrauterine life, known as fetal programming, significantly contribute to the development of diseases in adulthood. Fetal programming induced by factors like maternal undernutrition leads to low birth weight and increases the risk of cardiometabolic diseases.
Methods: We studied a rat model of maternal undernutrition during gestation (MUN) to investigate gene expression changes in cardiac tissue using RNA-sequencing of day 0-1 litters.
Coffee and cocoa manufacturing produces large amounts of waste. Generated by-products contain bioactive compounds with antioxidant and anti-inflammatory properties, suitable for treating metabolic syndrome (MetS). We aimed to compare the efficacy of aqueous extracts and flours from coffee pulp (CfPulp-E, CfPulp-F) and cocoa shell (CcShell-E, CcShell-F) to ameliorate MetS alterations induced by a high-fat diet (HFD).
View Article and Find Full Text PDFThe central nervous system contains a daunting number of different cell types. Understanding how each cell acquires its fate remains a major challenge for neurobiology. The developing embryonic ventral nerve cord (VNC) of Drosophila melanogaster has been a powerful model system for unraveling the basic principles of cell fate specification.
View Article and Find Full Text PDFLow birth weight (LBW) and accelerated growth during lactation are associated with cardiometabolic disease development. LBW offspring from rats exposed to undernutrition during gestation (MUN) develops hypertension. In this rat model, we tested if slower postnatal growth improves early cardiometabolic alterations.
View Article and Find Full Text PDFA striking feature of the nervous system pertains to the appearance of different neural cell subtypes at different axial levels. Studies in the Drosophila central nervous system reveal that one mechanism underlying such segmental differences pertains to the segment-specific removal of cells by programmed cell death (PCD). One group of genes involved in segment-specific PCD is the Hox homeotic genes.
View Article and Find Full Text PDFThe MCM2-7 complex is a highly conserved hetero-hexameric protein complex, critical for DNA unwinding at the replicative fork during DNA replication. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. In mice, mutations in MCM2-7 genes result in growth retardation and mortality.
View Article and Find Full Text PDFThe modulation of the host's metabolism to protect tissue from damage induces tolerance to infections increasing survival. Here, we examined the role of the thyroid hormones, key metabolic regulators, in the outcome of malaria. Hypothyroidism confers protection to experimental cerebral malaria by a disease tolerance mechanism.
View Article and Find Full Text PDFFetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated cardiovascular fibrosis and remodeling, and lactation is a key developmental window.
View Article and Find Full Text PDFA prominent aspect of most, if not all, central nervous systems (CNSs) is that anterior regions (brain) are larger than posterior ones (spinal cord). Studies in Drosophila and mouse have revealed that Polycomb Repressor Complex 2 (PRC2), a protein complex responsible for applying key repressive histone modifications, acts by several mechanisms to promote anterior CNS expansion. However, it is unclear what the full spectrum of PRC2 action is during embryonic CNS development and how PRC2 intersects with the epigenetic landscape.
View Article and Find Full Text PDFDuring embryonic development, a number of genetic cues act to generate neuronal diversity. While intrinsic transcriptional cascades are well-known to control neuronal sub-type cell fate, the target cells can also provide critical input to specific neuronal cell fates. Such signals, denoted retrograde signals, are known to provide critical survival cues for neurons, but have also been found to trigger terminal differentiation of neurons.
View Article and Find Full Text PDFA conserved feature of the central nervous system (CNS) is the prominent expansion of anterior regions (brain) compared with posterior (nerve cord). The cellular and regulatory processes driving anterior CNS expansion are not well understood in any bilaterian species. Here, we address this expansion in and mouse.
View Article and Find Full Text PDFA readily evident feature of animal central nervous systems (CNSs), apparent in all vertebrates and many invertebrates alike, is its "wedge-like" appearance, with more cells generated in anterior than posterior regions. This wedge could conceivably be established by an antero-posterior (A-P) gradient in the number of neural progenitor cells, their proliferation behaviors, and/or programmed cell death (PCD). However, the contribution of each of these mechanisms, and the underlying genetic programs, are not well understood.
View Article and Find Full Text PDF