Publications by authors named "Ignacio Mendez-Balbuena"

Traumatic brain injury (TBI), resulting from external forces, is a leading cause of disability and death, often leading to cognitive deficits that affect attention, concentration, speech and language, learning and memory, reasoning, planning, and problem-solving. Given the diverse mechanisms underlying TBI symptoms, it is essential to characterize its neurophysiological and neuropsychological effects. To address this, we employed weighted coherence (WC) analysis in patients performing the Halstead-Reitan categorization task, alongside a control group of eight healthy individuals.

View Article and Find Full Text PDF

The SARS-CoV-2 virus that causes the COVID-19 disease, reports hundreds of infections daily, the alterations and sequelae of this new pathogen have been reported globally, due to the seriousness of being an older adult and evolving seriously.

View Article and Find Full Text PDF

Objective: The purpose of our study was to demonstrate the benefits of role play based on a Historical-Cultural perspective with the implementation of symbolic elements generated by the development of drawing of preschool children from suburban origin in a group of normal Mexican preschool children. We predict that the quality of the drawings will be improved after the preschoolers participate in such a role play program.

Methods: A pre-experimental study was carried out, with pre-test and post-test assessments.

View Article and Find Full Text PDF

Among neurodevelopmental disorders, attention deficit hyperactivity disorder (ADHD) is the main cause of school failure in children. Notably, visuospatial dysfunction has also been emphasized as a leading cause of low cognitive performance in children with ADHD. Consequently, the present study aimed to identify ADHD-related changes in electroencephalography (EEG) characteristics, associated with visual object processing in school-aged children.

View Article and Find Full Text PDF

The present investigation documents the electrophysiological occurrence of multisensory internal stochastic resonance (MISR) in the human electroencephalographic (EEG) coherence elicited by auditory and visual noise.We define MISR of EEG coherence as the phenomenon for which an intermediate level of input noise of a sensory modality enhances EEG coherence in response to another noisy sensory modality. Here, EEG coherence is computed by the global weighted coherence (GWC), modulated by quasi-Brownian noise.

View Article and Find Full Text PDF

Stochastic resonance (SR) is an inherent and counter-intuitive mechanism of signal-to-noise ratio (SNR) facilitation in biological systems associated with the application of an intermediate level of noise. As a first step to investigate in detail this phenomenon in the somatosensory system, here we examined whether the direct application of noisy light on pyramidal neurons from the mouse-barrel cortex expressing a light-gated channel channelrhodopsin-2 (ChR2) can produce facilitation in somatosensory evoked field potentials. Using anesthetized Thy1-ChR2-YFP transgenic mice, and a new neural technology, that we called Brownian optogenetic-noise-photostimulation (BONP), we provide evidence for how BONP directly applied on the barrel cortex modulates the SNR in the amplitude of whisker-evoked field potentials (whisker-EFP).

View Article and Find Full Text PDF

The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise.

View Article and Find Full Text PDF

We performed intracellular and single-unit extracellular recordings of neurons from different regions of the basilar papilla in the isolated chicken inner ear. We compared the spontaneous activity and the response properties of these neurons in embryos at E15 versus posthatching animals at P1. The recordings were carried out from the apical (position 0) to the basal extension at three positions of the basilar papilla, at 5%, 10% and 40% of the entire length of the cochlea.

View Article and Find Full Text PDF

Enhanced physiological tremor is a disabling condition that arises because of unstable interactions between central tremor generators and the biomechanics of the spinal stretch reflex. Previous work has shown that peripheral input may push the tremor-related spinal and cortical systems closer to anti-phase firing, potentially leading to a reduction in tremor through phase cancellation. The aim of the present study was to investigate whether peripherally applied mechanical stochastic noise can attenuate enhanced physiological tremor and improve motor performance.

View Article and Find Full Text PDF

Noise can have beneficial effects as shown by the stochastic resonance (SR) phenomenon which is characterized by performance improvement when an optimal noise is added. Modern attempts to improve human performance utilize this phenomenon. The purpose of the present study was to investigate whether performance improvement by addition of optimum noise (ON) is related to increased cortical motor spectral power (SP) and increased corticomuscular coherence.

View Article and Find Full Text PDF

Modern attempts to improve human performance focus on stochastic resonance (SR). SR is a phenomenon in non-linear systems characterized by a response increase of the system induced by a particular level of input noise. Recently, we reported that an optimum level of 0-15 Hz Gaussian noise applied to the human index finger improved static isometric force compensation.

View Article and Find Full Text PDF

Isometric compensation of predictably frequency-modulated low forces is associated with corticomuscular coherence (CMC) in beta and low gamma range. It remains unclear how the CMC is influenced by unpredictably modulated forces, which create a mismatch between expected and actual sensory feedback. We recorded electroencephalography from the contralateral hand motor area, electromyography (EMG), and the motor performance of 16 subjects during a visuomotor task in which they had to isometrically compensate target forces at 8% of the maximum voluntary contraction with their right index finger.

View Article and Find Full Text PDF

Several studies about noise-enhanced balance control in humans support the hypothesis that stochastic resonance can enhance the detection and transmission in sensorimotor system during a motor task. The purpose of the present study was to extend these findings in a simpler and controlled task. We explored whether a particular level of a mechanical Gaussian noise (0-15 Hz) applied on the index finger can improve the performance during compensation for a static force generated by a manipulandum.

View Article and Find Full Text PDF

Individuals with Parkinson's disease (PD) mainly suffer from motor impairments which increase the risk of falls and lead to a decline of quality of life. Several studies investigated the long-term effect of dance for people with PD. The aims of the present study were to investigate (i) the short-term effects of dance (i.

View Article and Find Full Text PDF

In the investigation of corticomuscular coherence (CMC), it remained unclear why some subjects do not present significant CMC. We predicted that such subjects will develop CMC as a result of learning as indexed by improved performance during a visuomotor task. We investigated CMC, cortical motor spectral power (SP), and performance in 14 subjects during isometric compensation of a static force or dynamic force (DF) with their right index finger.

View Article and Find Full Text PDF

During steady muscle contractions, the human sensorimotor cortex generates oscillations in the beta-frequency range (15-30 Hz) that are coherent with the activity of contralateral spinal motoneurons. This corticospinal coherence is thought to favor stationary motor states, but its mode of operation remains elusive. We hypothesized that corticospinal beta-range coherence depends on the sensorimotor processing state before a steady force task and may thus increase after sensorimotor tuning to dynamic force generation.

View Article and Find Full Text PDF