The endeavor of sustainable chemistry has led to significant advancements in green methodologies aimed at minimizing environmental impact while maximizing efficiency. Herein, a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes is reported for the first time in aqueous media while using a non-noble metal catalyst. This work demonstrates that the combination of nitrogen and phosphorous ligands in the synthesis of supported heteroatom-incorporated Co nanoparticles is crucial for obtaining the desired benzimidazoles.
View Article and Find Full Text PDFThe oxidation of Ag crystal surfaces has recently triggered strong controversies around the presence of sulfur impurities that may catalyze reactions, such as the alkene epoxidations, especially the ethylene epoxidation. A fundamental challenge to achieve a clear understanding is the variety of procedures and setups involved as well as the particular history of each sample. Especially, for the often-used X-ray photoemission technique, product detection, or photoemission peak position overlap are problematic.
View Article and Find Full Text PDFNanostructured tungsten disulfide (WS) is one of the most promising candidates for being used as active nanomaterial in chemiresistive gas sensors, as it responds to hydrogen gas at room temperature. This study analyzes the hydrogen sensing mechanism of a nanostructured WS layer using near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and density functional theory (DFT). The W 4f and S 2p NAP-XPS spectra suggest that hydrogen makes physisorption on the WS active surface at room temperature and chemisorption on tungsten atoms at temperatures above 150 °C.
View Article and Find Full Text PDFNi-Fe nanocatalysts supported on CeO have been prepared for the catalysis of methane steam reforming (MSR) aiming for coke-resistant noble metal-free catalysts. The catalysts have been synthesized by traditional incipient wetness impregnation as well as dry ball milling, a green and more sustainable preparation method. The impact of the synthesis method on the catalytic performance and the catalysts' nanostructure has been investigated.
View Article and Find Full Text PDFDynamic covalent chemistry is a powerful approach to design covalent organic frameworks, where high crystallinity is achieved through reversible bond formation. Here, we exploit near-ambient pressure X-ray photoelectron spectroscopy to elucidate the reversible formation of a two-dimensional boroxine framework. By mapping the pressure-temperature parameter space, we identify the regions where the rates of the condensation and hydrolysis reactions become dominant, being the key to enable the thermodynamically controlled growth of crystalline frameworks.
View Article and Find Full Text PDFHydrogen permeable electrodes can be utilized for electrolytic ammonia synthesis from dinitrogen, water, and renewable electricity under ambient conditions, providing a promising route toward sustainable ammonia. The understanding of the interactions of adsorbing N and permeating H at the catalytic interface is a critical step toward the optimization of this NH synthesis process. In this study, we conducted a unique in situ near ambient pressure X-ray photoelectron spectroscopy experiment to investigate the solid-gas interface of a Ni hydrogen permeable electrode under conditions relevant for ammonia synthesis.
View Article and Find Full Text PDFEfficiently treating methane emissions in transportation remains a challenge. Here, we investigate palladium and platinum mono- and bimetallic ceria-supported catalysts synthesized by mechanical milling and by traditional impregnation for methane total oxidation under dry and wet conditions, reproducing those present in the exhaust of natural gas vehicles. By applying a toolkit of in situ synchrotron techniques (X-ray diffraction, X-ray absorption and ambient pressure photoelectron spectroscopies), together with transmission electron microscopy, we show that the synthesis method greatly influences the interaction and structure at the nanoscale.
View Article and Find Full Text PDFSolar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light-harvesting properties. Besides, their extended π-conjugation provides them with an excellent charge conduction along the whole structure.
View Article and Find Full Text PDFCurved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2022
The present study proposes a laser irradiation method to superficially reduce BiVO photoelectrodes and boost their water oxidation reaction performance. The origin of this enhanced performance toward oxygen evolution reaction (OER) was studied using a combination of a suite of structural, chemical, and mechanistic advanced characterization techniques including X-ray photoelectron (XPS), X-ray absorption spectroscopy (XAS), electrochemical impedance spectroscopy (EIS), and transient absorption spectroscopy (TAS), among others. We found that the reduction of the material is localized at the surface of the sample and that this effect creates effective n-type doping and a shift to more favorable energy band positions toward water oxidation.
View Article and Find Full Text PDFSolar fuels production is a cornerstone in the development of emerging sustainable energy conversion and storage technologies. Light-induced H production from water represents one of the most crucial challenges to produce renewable fuel. Metal-organic frameworks (MOFs) are being investigated in this process, due to the ability to assemble new structures with the use of suitable photoactive building blocks.
View Article and Find Full Text PDFThe atomic contributions to valence electronic structure for 37 ionic liquids (ILs) are identified using a combination of variable photon energy XPS, resonant Auger electron spectroscopy (RAES) and a subtraction method. The ILs studied include a diverse range of cationic and anionic structural moieties. We introduce a new parameter for ILs, the energy difference between the energies of the cationic and anionic highest occupied fragment orbitals (HOFOs), which we use to identify the highest occupied molecular orbital (HOMO).
View Article and Find Full Text PDFAfter 40 years of research on photocatalytic CO reduction, there are still many unknowns about its mechanistic aspects even for the most common TiO-based photocatalytic systems. These uncertainties include the pathways inducing visible-light activity in wide-band gap semiconductors, the charge transfer between semiconductors and plasmonic metal nanoparticles, the unambiguous determination of the origin of C-bearing products, the very first step in the activation of the CO molecule, the factors determining the selectivity, the reasons for photocatalyst deactivation, the closure of the catalytic cycle by the hole-scavenging reagent, and the detailed reaction pathways and the most suitable techniques for their determination. This Perspective discusses these controversial issues based on the most relevant investigations reported so far.
View Article and Find Full Text PDFThe formation of ionic liquid (IL) mixtures has been proposed as an approach to rationally fine-tune the physicochemical properties of ILs for a variety of applications. However, the effects of forming such mixtures on the resultant properties of the liquids are only beginning to be understood. Towards a more complete understanding of both the thermodynamics of mixing ILs and the effect of mixing these liquids on their structures and physicochemical properties, the spatial arrangement and free volume of IL mixtures containing the common [CCim] cation and different anions have been systematically explored using small angle X-ray scattering (SAXS), positron annihilation lifetime spectroscopy (PALS) and Xe NMR techniques.
View Article and Find Full Text PDFTitanium oxynitride (TiON) thin films are fabricated using reactive magnetron sputtering. The mechanism of their growth formation is explained, and their optical properties are presented. The films grown when the level of residual oxygen in the background vacuum was between 5 nTorr to 20 nTorr exhibit double epsilon-near-Zero (2-ENZ) behavior with ENZ1 and ENZ2 wavelengths tunable in the 700-850 and 1100-1350 nm spectral ranges, respectively.
View Article and Find Full Text PDFThe last 10-15 years have witnessed a resurgence in the application of high pressure X-ray photoelectron spectroscopy, mainly through the development of new electron energy analyser designs and the utilization of high-brilliance synchrotron radiation sources. To continue this expansion of the technique, it is crucial that instruments are developed for the home-laboratory, considering that this is where the vast majority of traditional ultra-high vacuum (UHV) X-ray photoelectron spectroscopy is performed. The research presented here introduces a new addition to the field, an instrument capable of performing spectroscopy measurements from UHV to high pressure (25 mbar), achieved using a retractable and modular reaction cell design.
View Article and Find Full Text PDFMacromol Biosci
September 2016
This study reports a series of novel amino acid based dual-responsive hydrogels. Prepared by a facile one-pot 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) coupling reaction, the solid content, structure, and mechanical behavior of hydrogels could be easily adjusted by changing the concentrations of the polymers and the crosslinkers. With pH-responsive anionic pseudo-peptides as backbones and disulfide-containing l-cystine dimethyl ester as crosslinkers, these hydrogels are able to collapse and form relatively compact structure at an acidic pH, while swelled and partly dissociated at a neutral pH.
View Article and Find Full Text PDFThe structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations.
View Article and Find Full Text PDFIonic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).
View Article and Find Full Text PDFHigh-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al Kα X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens.
View Article and Find Full Text PDFSimple ionic liquids have long been held to be designer solvents, based upon the ability to independently vary their cations and anions. The formation of mixtures of ionic liquids increases this synthetic flexibility. We review the available literature of these ionic liquid mixtures to identify how their properties change and the possibility for their application.
View Article and Find Full Text PDFIonic liquid surfaces can become electrically charged during X-ray photoelectron spectroscopy experiments, due to the flux of photoelectrons leaving the surface. This causes a shift in the measured binding energies of X-ray photoelectron peaks that depends on the magnitude of the surface charging. Consequently, a charge correction method is required for ionic liquids.
View Article and Find Full Text PDFA range of chloroindate(iii) ionic liquid systems was prepared by mixing of 1-alkyl-3-methylimidazolium chloride with indium(iii) chloride in various ratios, expressed as the mol fraction of indium(iii) chloride, chi(InCl(3)). For chi(InCl(3))= 0.50, the products were liquids, whereas for chi(InCl(3)) > 0.
View Article and Find Full Text PDF