Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings.
View Article and Find Full Text PDFPurpose: Women treated with radiotherapy before 30 years of age have increased risk of developing breast cancer at an early age. Here, we sought to investigate mechanisms by which radiation promotes aggressive cancer.
Experimental Design: The tumor microenvironment (TME) of breast cancers arising in women treated with radiotherapy for Hodgkin lymphoma was compared with that of sporadic breast cancers.
Background: Ubiquitous digital technologies such as smartphone sensors promise to fundamentally change biomedical research and treatment monitoring in neurological diseases such as PD, creating a new domain of digital biomarkers.
Objectives: The present study assessed the feasibility, reliability, and validity of smartphone-based digital biomarkers of PD in a clinical trial setting.
Methods: During a 6-month, phase 1b clinical trial with 44 Parkinson participants, and an independent, 45-day study in 35 age-matched healthy controls, participants completed six daily motor active tests (sustained phonation, rest tremor, postural tremor, finger-tapping, balance, and gait), then carried the smartphone during the day (passive monitoring), enabling assessment of, for example, time spent walking and sit-to-stand transitions by gyroscopic and accelerometer data.
Children exposed to ionizing radiation have a substantially greater breast cancer risk than adults; the mechanism for this strong age dependence is not known. Here we show that pubertal murine mammary glands exposed to sparsely or densely ionizing radiation exhibit enrichment of mammary stem cell and Notch pathways, increased mammary repopulating activity indicative of more stem cells, and propensity to develop estrogen receptor (ER) negative tumors thought to arise from stem cells. We developed a mammary lineage agent-based model (ABM) to evaluate cell inactivation, self-renewal, or dedifferentiation via epithelial-mesenchymal transition (EMT) as mechanisms by which radiation could increase stem cells.
View Article and Find Full Text PDFDyskerin is one of the three subunits of the telomerase ribonucleoprotein (RNP) complex. Very little is known about the role of dyskerin in the biology of the telomeres in cancer cells. In this study, we use a quantitative, multiscale 3D image-based in situ method and several molecular techniques to show that dyskerin is overexpressed in lung cancer cell lines.
View Article and Find Full Text PDFBackground: Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs) are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis.
View Article and Find Full Text PDFPurpose: Epithelial-to-mesenchymal transition (EMT) is a phenotype that alters cell morphology, disrupts morphogenesis, and increases motility. Our prior studies have shown that the progeny of human mammary epithelial cells (HMECs) irradiated with 2 Gy undergoes transforming growth factor β (TGF-β)-mediated EMT. In this study we determined whether radiation dose or quality affected TGF-β-mediated EMT.
View Article and Find Full Text PDFProtected telomeres ensure normal chromosomal segregation during mitosis but at the same time can endow genetically abnormal cancer cells with immortality. Telomerase has a pivotal role in telomere protection, both in normal and cancer cells. Understanding the functional interplay between telomere shortening and telomerase expression in cancer cells is of critical importance to elucidating the precise mechanisms by which these cells are able to bypass telomere crisis and become immortal.
View Article and Find Full Text PDFThe molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers and genetic alterations. We analyzed markers of DNA damage response (DDR), proliferative stress, and telomeric stress: gamma-H2AX, p16, p53, and TERT.
View Article and Find Full Text PDF