Publications by authors named "Ignacio Del Castillo"

Objective: Mutations in the MTRNR1 gene of mitochondrial DNA are associated with non-syndromic hearing loss and increased susceptibility to aminoglycoside ototoxicity. The aim of our study was to determine the clinical characteristics of sensorineural hearing loss caused by the m.1555A>G mutation in MTRNR1.

View Article and Find Full Text PDF

Objective: Genetic variants in the OTOF gene are responsible for non-syndromic hearing loss with an autosomal recessive inheritance pattern. The objective of our work was to evaluate the clinical characteristics of patients with biallelic pathogenic variants in OTOF and their evolution after treatment.

Methods: A cohort of 124 patients with prelingual hearing loss, studied from 1996 to 2023, was included in this study.

View Article and Find Full Text PDF

Dysfunction of some mitochondrial aminoacyl-tRNA synthetases (encoded by the , , and genes) results in a great variety of phenotypes ranging from non-syndromic hearing impairment (NSHI) to very complex syndromes, with a predominance of neurological signs. The diversity of roles that are played by these moonlighting enzymes and the fact that most pathogenic variants are missense and affect different domains of these proteins in diverse compound heterozygous combinations make it difficult to establish genotype-phenotype correlations. We used a targeted gene-sequencing panel to investigate the presence of pathogenic variants in those four genes in cohorts of 175 Spanish and 18 Colombian familial cases with non-DFNB1 autosomal recessive NSHI.

View Article and Find Full Text PDF

Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression.

View Article and Find Full Text PDF

Non-syndromic hearing impairment (NSHI) is a very heterogeneous genetic condition, involving over 130 genes. Mutations in , encoding connexin-26, are a major cause of NSHI (the DFNB1 type), but few other genes have significant epidemiological contributions. Mutations in the gene result in the DFNB16 type of autosomal recessive NSHI, a common cause of moderate hearing loss.

View Article and Find Full Text PDF

Background: Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei.

View Article and Find Full Text PDF

Objectives: Attenuation of otoacoustic emissions over time has been reported for many patients with hearing impairment harboring mutations in the OTOF gene. In this study, the time course of changes of distortion product otoacoustic emissions (DPOAEs) has been analyzed in a cohort of patients in the light of tympanometry results.

Design: The changes of DPOAEs in 16 patients with OTOF -related hearing impairment were retrospectively analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • - Childhood hearing impairment can arise from various external factors, not including infections in the middle ear.
  • - Some key causes include conditions affecting the embryo and fetus (embryofoetopathy), meningitis, physical injuries (trauma), harmful effects from medications (drug ototoxicity), and exposure to loud sounds (noise trauma).
  • - Understanding these extrinsic causes is crucial for prevention and treatment strategies in managing hearing loss in children.
View Article and Find Full Text PDF

Huntington's Disease (HD) is a devastating disorder characterized by a triad of motor, psychiatric and cognitive manifestations. Psychiatric and emotional symptoms appear at early stages of the disease which are consistently described by patients and caregivers among the most disabling. Here, we show for the first time that Foxp2 is strongly associated with some psychiatric-like disturbances in the R6/1 mouse model of HD.

View Article and Find Full Text PDF

The inner ear is a complex structure at the cellular and molecular levels [...

View Article and Find Full Text PDF

Glycogen synthase kinase 3β (GSK3β) is a core protein, with a relevant role in many neurodegenerative disorders including Alzheimer's disease. The enzyme has been largely studied as a potential therapeutic target for several neurological diseases. Unfortunately, preclinical and clinical studies with several GSK3β inhibitors have failed due to many reasons such as excessive toxicity or lack of effects in human subjects.

View Article and Find Full Text PDF

Pathogenic variants in the gene cause the DFNB59 type of autosomal recessive non-syndromic hearing impairment (AR-NSHI). Phenotypes are not homogeneous, as a few subjects show auditory neuropathy spectrum disorder (ANSD), while others show cochlear hearing loss. The numbers of reported cases and pathogenic variants are still small to establish accurate genotype-phenotype correlations.

View Article and Find Full Text PDF

Hearing impairment not etiologically associated with clinical signs in other organs (non-syndromic) is genetically heterogeneous, so that over 120 genes are currently known to be involved. The frequency of mutations in each gene and the most frequent mutations vary throughout populations. Here we review the genetic etiology of non-syndromic hearing impairment (NSHI) in Europe.

View Article and Find Full Text PDF

Auditory Neuropathy (AN) is characterized by disruption of temporal coding of acoustic signals in auditory nerve fibers resulting in alterations of auditory perceptions. Mutations in several genes have been associated to the most forms of AN. Underlying mechanisms include both pre-synaptic and post-synaptic damage involving inner hair cell (IHC) depolarization, neurotransmitter release, spike initiation in auditory nerve terminals, loss of auditory fibers and impaired conduction.

View Article and Find Full Text PDF

Objectives: Congenital profound hearing loss with preserved cochlear outer hair cell activity (otoacoustic emissions and cochlear microphonic) is the most common phenotype associated with mutations in the OTOF gene. The aim of this study was to investigate the pathophysiological mechanisms behind the auditory dysfunction in five patients (2 adults and 3 children) carrying biallelic mutations in OTOF, who showed an uncommon phenotype of mild hearing impairment associated with severe difficulties in speech perception and delay of language development.

Design: Patients underwent audiometric assessment with pure-tone and speech perception evaluation, and otoacoustic emissions and auditory brainstem response recording.

View Article and Find Full Text PDF

Nonsyndromic hereditary hearing loss is a common sensory defect in humans that is clinically and genetically highly heterogeneous. So far, 122 genes have been associated with this disorder and 50 of them have been linked to autosomal dominant (DFNA) forms like DFNA68, a rare subtype of hearing impairment caused by disruption of a stereociliary scaffolding protein (HOMER2) that is essential for normal hearing in humans and mice. In this study, we report a novel HOMER2 variant (c.

View Article and Find Full Text PDF

The mutational spectrum of many genes and their contribution to the global prevalence of hereditary hearing loss is still widely unknown. In this study, we have performed the mutational screening of EYA4 gene by DHLPC and NGS in a large cohort of 531 unrelated Spanish probands and one Australian family with autosomal dominant non-syndromic hearing loss (ADNSHL). In total, 9 novel EYA4 variants have been identified, 3 in the EYA4 variable region (c.

View Article and Find Full Text PDF

Background: Perrault syndrome is a rare autosomal recessive disorder that is characterized by the association of sensorineural hearing impairment and ovarian dysgenesis in females, whereas males have only hearing impairment. In some cases, patients present with a diversity of neurological signs. To date, mutations in six genes are known to cause Perrault syndrome, but they do not explain all clinically-diagnosed cases.

View Article and Find Full Text PDF

Purpose: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.

View Article and Find Full Text PDF

In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs22).

View Article and Find Full Text PDF

The inner ear is a very complex sensory organ whose development and function depend on finely balanced interactions among diverse cell types. The many different kinds of inner ear supporting cells play the essential roles of providing physical and physiological support to sensory hair cells and of maintaining cochlear homeostasis. Appropriately enough, the gene most commonly mutated among subjects with hereditary hearing impairment (HI), , encodes the connexin-26 (Cx26) gap-junction channel protein that underlies both intercellular communication among supporting cells and homeostasis of the cochlear fluids, endolymph and perilymph.

View Article and Find Full Text PDF

The transmembrane recognition complex (TRC40) pathway mediates the insertion of tail-anchored (TA) proteins into membranes. Here, we demonstrate that otoferlin, a TA protein essential for hair cell exocytosis, is inserted into the endoplasmic reticulum (ER) via the TRC40 pathway. We mutated the TRC40 receptor tryptophan-rich basic protein (Wrb) in hair cells of zebrafish and mice and studied the impact of defective TA protein insertion.

View Article and Find Full Text PDF

Mutations in the OTOF gene encoding otoferlin result in a disrupted function of the ribbon synapses with impairment of the multivesicular glutamate release. Most affected subjects present with congenital hearing loss and abnormal auditory brainstem potentials associated with preserved cochlear hair cell activities (otoacoustic emissions, cochlear microphonics [CMs]). Transtympanic electrocochleography (ECochG) has recently been proposed for defining the details of potentials arising in both the cochlea and auditory nerve in this disorder, and with a view to shedding light on the pathophysiological mechanisms underlying auditory dysfunction.

View Article and Find Full Text PDF

Background: PRPS1 encodes isoform I of phosphoribosylpyrophosphate synthetase (PRS-I), a key enzyme in nucleotide biosynthesis. Different missense mutations in PRPS1 cause a variety of disorders that include PRS-I superactivity, nonsyndromic sensorineural hearing impairment, Charcot-Marie-Tooth disease, and Arts syndrome. It has been proposed that each mutation would result in a specific phenotype, depending on its effects on the structure and function of the enzyme.

View Article and Find Full Text PDF
Article Synopsis
  • A Turkish family had two siblings with hearing loss caused by a genetic issue on one of their chromosomes.
  • Scientists found a region on chromosome 6 that contains 247 genes, including one called MYO6, but they didn't find any harmful changes in that gene.
  • They discovered another gene called CLIC5 that seemed to be linked to the hearing problems, and a specific mutation in this gene was connected to the siblings' condition, but it wasn't found in other patients from different places.
View Article and Find Full Text PDF