Nonmass-enhancing (NME) lesions constitute a diagnostic challenge in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast. Computer-aided diagnosis (CAD) systems provide physicians with advanced tools for analysis, assessment, and evaluation that have a significant impact on the diagnostic performance. Here, we propose a new approach to address the challenge of NME lesion detection and segmentation, taking advantage of independent component analysis (ICA) to extract data-driven dynamic lesion characterizations.
View Article and Find Full Text PDFAlzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people. Its development has been shown to be closely related to changes in the brain connectivity network and in the brain activation patterns along with structural changes caused by the neurodegenerative process. Methods to infer dependence between brain regions are usually derived from the analysis of covariance between activation levels in the different areas.
View Article and Find Full Text PDFStud Health Technol Inform
January 2018
Recent advances in the process of diagnosis of neurodegenerative diseases, such as Alzheimer's Disease, rely on the use of molecular imaging that allow the interpretation of different metabolic biomarkers in the brain. However these procedures are considered of invasive nature, as they involve the injection of radioactive markers. On the other hand, Magnetic Resonance Imaging (MRI) is perhaps the most widely used and less invasive medical imaging technique, although its ability to detect Alzheimer's Disease has revealed limited.
View Article and Find Full Text PDFThis paper presents the analysis of the statistical significance in the selection of the ROI for the discriminant analysis of brain images to identify Parkinson patients or subjects without any pathology. The particular features and brain functional patterns of the Parkinson's disease cause that there are regions that conveniently reveal the presence of the pathology, in this case mainly the striatum region. The selection of the brain mask makes incidence in two main aspects: the selection of the region of interest (striatum and surrounding area) for the analysis, but also the selection of the region without significance, which is the reference area for the intensity normalization, previous to the analysis.
View Article and Find Full Text PDFObjective: This paper explores the importance of the latent symmetry of the brain in computer-aided systems for diagnosing Alzheimer's disease (AD). Symmetry and asymmetry are studied from two points of view: (i) the development of an effective classifier within the scope of machine learning techniques, and (ii) the assessment of its relevance to the AD diagnosis in the early stages of the disease.
Methods: The proposed methodology is based on eigenimage decomposition of single-photon emission-computed tomography images, using an eigenspace extension to accommodate odd and even eigenvectors separately.