Publications by authors named "Ignacio Abadia"

Complex interactions between brain regions and the spinal cord (SC) govern body motion, which is ultimately driven by muscle activation. Motor planning or learning are mainly conducted at higher brain regions, whilst the SC acts as a brain-muscle gateway and as a motor control centre providing fast reflexes and muscle activity regulation. Thus, higher brain areas need to cope with the SC as an inherent and evolutionary older part of the body dynamics.

View Article and Find Full Text PDF

Collaborative robots, or cobots, are designed to work alongside humans and to alleviate their physical burdens, such as lifting heavy objects or performing tedious tasks. Ensuring the safety of human-robot interaction (HRI) is paramount for effective collaboration. To achieve this, it is essential to have a reliable dynamic model of the cobot that enables the implementation of torque control strategies.

View Article and Find Full Text PDF

The inferior olivary (IO) nucleus makes up the signal gateway for several organs to the cerebellar cortex. Located within the sensory-motor-cerebellum pathway, the IO axons, i.e.

View Article and Find Full Text PDF

The presence of computation and transmission-variable time delays within a robotic control loop is a major cause of instability, hindering safe human-robot interaction (HRI) under these circumstances. Classical control theory has been adapted to counteract the presence of such variable delays; however, the solutions provided to date cannot cope with HRI robotics inherent features. The highly nonlinear dynamics of HRI cobots (robots intended for human interaction in collaborative tasks), together with the growing use of flexible joints and elastic materials providing passive compliance, prevent traditional control solutions from being applied.

View Article and Find Full Text PDF

The work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque-driven control. The spiking cerebellar controller provides torque commands allowing for accurate and coordinated arm movements.

View Article and Find Full Text PDF