Publications by authors named "Igietseme J"

We investigated if the efficacy of a Chlamydia abortus (Cab) subunit vaccine is influenced by route of administration. Thus, female CBA/J mice were immunized either by mucosal or systemic routes with Vibrio cholerae ghost (VCG)-based vaccine expressing T and B cell epitopes of Cab polymorphic membrane protein (Pmp) 18D, termed rVCG-Pmp18.3.

View Article and Find Full Text PDF

(Cab) causes spontaneous abortion and neonatal mortality in infected ruminants and pregnant women. Most Cab infections are asymptomatic, although they can be treated with antibiotics, signifying that control of these infections may require alternative strategies, including the use of effective vaccines. However, the limitations imposed by live attenuated and inactivated vaccines further suggest that employment of subunit vaccines may need to be considered.

View Article and Find Full Text PDF

We have previously shown that the time of Chlamydia infection was crucial in determining the chlamydial infectivity and pathogenesis. This study aims to determine whether the time of Chlamydia infection affects the genital tract microbiome. This study analyzed mice vaginal, uterine, and ovary/oviduct microbiome with and without Chlamydia infection.

View Article and Find Full Text PDF

A novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China in 2019 and later ignited a global pandemic. Contrary to expectations, the effect of the pandemic was not as devastating to Africa and its young population compared to the rest of the world. To provide insight into the possible reasons for the presumed immune sufficiency to coronavirus disease 2019 (COVID-19) in Africa, this review critically examines literature published from 2020 onwards on the dynamics of COVID-19 infection and immunity and how other prevalent infectious diseases in Africa might have influenced the outcome of COVID-19.

View Article and Find Full Text PDF

Efficacious vaccines are needed to control genital chlamydial diseases in humans and the veterinary industry. We previously reported a (Cab) vaccine comprising recombinant ghosts (rVCG) expressing the conserved and immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-Pmp18.1) protein that protected mice against intravaginal challenge.

View Article and Find Full Text PDF

Genital infection causes severe reproductive pathologies such as salpingitis and pelvic inflammatory disease that can lead to tubal factor infertility. MicroRNAs (miRNAs) are evolutionarily conserved regulators of mammalian gene expression in development, immunity and pathophysiologic processes during inflammation and infection, including infection. Among the miRNAs involved in regulating host responses and pathologic outcome of infection, we have shown that miR-378b was significantly differentially expressed during primary infection and reinfection.

View Article and Find Full Text PDF

Vaccine-induced immune responses following immunization with promising vaccines protected experimental animals from induced upper genital tract pathologies and infertility. In contrast, primary genital infection with live does not protect against these pathologies. We hypothesized that differential miRNA profiles induced in the upper genital tracts (UGT) of mice correlate with the disparate immunity vs.

View Article and Find Full Text PDF

Shift work, performed by approximately 21 million Americans, is irregular or unusual work schedule hours occurring after 6:00 pm. Shift work has been shown to disrupt circadian rhythms and is associated with several adverse health outcomes and chronic diseases such as cancer, gastrointestinal and psychiatric diseases and disorders. It is unclear if shift work influences the complications associated with certain infectious agents, such as pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility resulting from genital chlamydial infection.

View Article and Find Full Text PDF

Human genital infection is a major public health concern due to the serious reproductive system complications. binds several receptor tyrosine kinases (RTKs) on host cells, including the epidermal growth factor receptor (EGFR), and activates cellular signaling cascades for host invasion, cytoskeletal remodeling, optimal inclusion development, and induction of pathogenic epithelial-mesenchyme transition (EMT). also upregulates transforming growth factor beta (TGF-β) expression, whose signaling pathway synergizes with the EGFR cascade, but its role in infectivity, inclusions, and EMT induction is unknown.

View Article and Find Full Text PDF

Background: Plasmodium falciparum, the deadliest causative agent of malaria, has high prevalence in Nigeria. Drug resistance causing failure of previously effective drugs has compromised anti-malarial treatment. On this basis, there is need for a proactive surveillance for resistance markers to the currently recommended artemisinin-based combination therapy (ACT), for early detection of resistance before it become widespread.

View Article and Find Full Text PDF

Genital chlamydia infection in women causes complications such as pelvic inflammatory disease and tubal factor infertility, but it is unclear why some women are more susceptible than others. Possible factors, such as time of day of chlamydia infection on chlamydial pathogenesis has not been determined. We hypothesised that infections during the day, will cause increased complications compared to infections at night.

View Article and Find Full Text PDF

We tested the hypothesis that the impact of the Fms-like tyrosine kinase 3-ligand (Flt3L; FL) on recombinant ghost (rVCG) vaccine-induced chlamydial immunity is influenced by route of vaccine delivery. Female C57BL/6J mice were immunized rectally (IR) or intramuscularly (IM) with rVCG co-expressing the PmpD and PorB proteins (rVCG- PmpD/PorB) with and without FL or glycoprotein D of HSV-2 (rVCG-gD2) as antigen control. Vaccine evaluation was based on measurement of T cell proliferation, Th1/Th2 cytokine, and humoral responses at systemic and mucosal compartments, and protection against intravaginal challenge infection.

View Article and Find Full Text PDF

Background: Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology.

View Article and Find Full Text PDF

Purpose: Trachoma, caused by repeated ocular infection with Chlamydia trachomatis, is the leading infectious cause of blindness worldwide and is targeted for elimination as a public health problem. We sought to determine whether a one-time azithromycin mass treatment would reduce trachomatous inflammation-follicular (TF) levels below the elimination threshold of 5% in communities with disease prevalence between 5 and 9.9%.

View Article and Find Full Text PDF

The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.

View Article and Find Full Text PDF

The artemisinin-based combined therapy (ACT) post-treatment illness in -endemic areas is characterized by vague malaria-like symptoms. The roles of treatment modality, persistence of parasites and host proinflammatory response in disease course are unknown. We investigated the hypothesis that ACT post-treatment syndrome is driven by parasite genetic polymorphisms and proinflammatory response to persisting mutant parasites.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the public health challenges posed by Chlamydia-related diseases, such as trachoma and pelvic inflammatory disease, highlighting the need for an effective human vaccine due to failures in current prevention methods.
  • It emphasizes the potential of biodegradable polymeric nanoparticles as a promising delivery system for vaccine antigens to create a successful Chlamydia vaccine for humans.
  • The review suggests that advancements in research and positive results from animal model testing may lead to imminent clinical trials for Chlamydia vaccines, targeting both trachoma and reproductive health issues.
View Article and Find Full Text PDF

Chlamydia trachomatis is a bacterial agent that causes sexually transmitted infections worldwide. The regulatory functions of dendritic cells (DCs) play a major role in protective immunity against Chlamydia infections. Here, we investigated the role of ASC in DCs metabolism and the regulation of DCs activation and function during Chlamydia infection.

View Article and Find Full Text PDF

The reproductive system complications of genital chlamydial infection include fallopian tube fibrosis and tubal factor infertility. However, the molecular pathogenesis of these complications remains poorly understood. The induction of pathogenic epithelial-mesenchymal transition (EMT) through microRNA (miRNA) dysregulation was recently proposed as the pathogenic basis of chlamydial complications.

View Article and Find Full Text PDF

In this study, we tested the hypothesis that rectal immunization with a VCG-based chlamydial vaccine would cross-protect mice against heterologous genital Chlamydia trachomatis infection and Chlamydia-induced upper genital tract pathologies in mice. Female mice were immunized with a C. trachomatis serovar D-derived subunit vaccine or control or live serovar D elementary bodies (EBs) and the antigen-specific mucosal and systemic immune responses were characterized.

View Article and Find Full Text PDF

Background: We have previously reported that interleukin-10 (IL-10) deficient dendritic cells (DCs) are potent antigen presenting cells that induced elevated protective immunity against Chlamydia. To further investigate the molecular and biochemical mechanism underlying the superior immunostimulatory property of IL-10 deficient DCs we performed proteomic analysis on protein profiles from Chlamydia-pulsed wild-type (WT) and IL-10 DCs to identify differentially expressed proteins with immunomodulatory properties.

Results: The results showed that alpha enolase (ENO1), a metabolic enzyme involved in the last step of glycolysis was significantly upregulated in Chlamydia-pulsed IL-10 DCs compared to WT DCs.

View Article and Find Full Text PDF

Chlamydia is an obligate intracellular bacterium that relies on host cells for essential nutrients and adenosine triphosphate (ATP) for a productive infection. Although the unfolded protein response (UPR) plays a major role in certain microbial infectivity, its role in chlamydial pathogenesis is unknown. We hypothesized that Chlamydia induces UPR and exploits it to upregulate host cell uptake and metabolism of glucose, production of ATP, phospholipids, and other molecules required for its replicative development and host survival.

View Article and Find Full Text PDF

Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated.

View Article and Find Full Text PDF

Interleukin-10 (IL-10) has been implicated in susceptibility to genital chlamydial infection and the development of tubal pathologies. IL-10 limitation also resulted in the rapid elicitation of immune responses against Chlamydia, and decreased levels of IL-10 correlated with protective anti-Chlamydia immunity. To investigate the molecular basis for these effects, we compared the reproductive pathologies and fertility rates in Chlamydia-infected wild-type (WT) and IL-10-knockout (IL-10(-/-)) mice; we also analyzed the expression of the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily, IL-1β production, NLRP3 inflammasome assembly and activation, and the immunostimulatory capacity and apoptotic predilection of Chlamydia-exposed dendritic cells (DCs) from WT and IL-10(-/-) mice.

View Article and Find Full Text PDF