Large-scale brain simulation allows us to understand the interaction of vast numbers of neurons having nonlinear dynamics to help understand the information processing mechanisms in the brain. The scale of brain simulations continues to rise as computer performance improves exponentially. However, a simulation of the human whole brain has not yet been achieved as of 2024 due to insufficient computational performance and brain measurement data.
View Article and Find Full Text PDFBackground: Ensitrelvir, a 3C-like protease inhibitor, received emergency approval in Japan in November 2022 for treating non-hospitalized patients with mild-to-moderate COVID-19. However, confirmation of its real-world clinical effectiveness is limited.
Methods: This retrospective study evaluated 18 vaccinated outpatients (15 men; median age, 39.
The Fukushima Daiichi Nuclear Power Plant accident released considerable radionuclides into the environment. Radioactive particles, composed mainly of SiO, emerged as distinctive features, revealing insights into the accident's dynamics. While studies extensively focused on high-volatile radionuclides like Cs, investigations into low-volatile nuclides such as Sr and Pu remain limited.
View Article and Find Full Text PDFEnviron Sci Technol
November 2023
In this paper, we report results from, and demonstrate the value of, a global database for the collection and aggregation of reliable and comparable cost data for urban sanitation systems as they are built and operated on the ground (rather than the "as planned" costs that are often reported). We show that no particular "mode" of urban sanitation (for example "sewered sanitation" or "fecal sludge management") can be meaningfully described as "low cost" when compared to other modes. We show that economies of scale may operate for systems that transport waste from pits and sealed tanks by road as well as for sewerage.
View Article and Find Full Text PDFEmbodied simulation with a digital brain model and a realistic musculoskeletal body model provides a means to understand animal behavior and behavioral change. Such simulation can be too large and complex to conduct on a single computer, and so distributed simulation across multiple computers over the Internet is necessary. In this study, we report our joint effort on developing a spiking brain model and a mouse body model, connecting over the Internet, and conducting bidirectional simulation while synchronizing them.
View Article and Find Full Text PDFBackground: Alteration of chemosensitivity or tumor aggressiveness in response to chemotherapy has been reported, and liquid biopsy assessment during chemotherapy for colorectal cancers has confirmed the acquisition of mutations in various oncogenes. However, the occurrence of histological transformation seems to be extremely rare in colorectal cancers, and the few existing case reports of this transformation are from lung cancer and breast cancer. In this report, we describe the histological transformation of clinically aggressive scirrhous-type poorly differentiated adenocarcinoma of the ascending colon to signet-ring cell carcinoma in almost all recurrent tumors that were confirmed by autopsy after response to chemotherapy plus cetuximab.
View Article and Find Full Text PDFThe discovery of spin-transfer torque (STT) enabled the control of the magnetization direction in magnetic devices in nanoseconds using an electrical current. Ultrashort optical pulses have also been used to manipulate the magnetization of ferrimagnets at picosecond timescales by bringing the system out of equilibrium. So far, these methods of magnetization manipulation have mostly been developed independently within the fields of spintronics and ultrafast magnetism.
View Article and Find Full Text PDFThe pathological consequences leading to primary storage, autophagy impairment, impaired mitochondrial dynamics, and endoplasmic reticulum (ER) stress on neural cell dysfunction and apoptosis in metachromatic leukodystrophy (MLD) have been poorly elucidated. In the present study, we generated 2 cell lines of patient-specific-induced pluripotent stem cells (iPSCs) and modeled the progression of pathological events during the differentiation of iPSCs to motor neuron progenitors (MNPs) and mature motor neurons (MNs). The iPS cells were generated from two late-infantile MLD patient-derived skin fibroblasts using electroporation or the Sendai virus.
View Article and Find Full Text PDFSimulating the brain-body-environment trinity in closed loop is an attractive proposal to investigate how perception, motor activity and interactions with the environment shape brain activity, and vice versa. The relevance of this embodied approach, however, hinges entirely on the modeled complexity of the various simulated phenomena. In this article, we introduce a software framework that is capable of simulating large-scale, biologically realistic networks of spiking neurons embodied in a biomechanically accurate musculoskeletal system that interacts with a physically realistic virtual environment.
View Article and Find Full Text PDFFlavohaemoglobins (FlavoHbs) function as nitric oxide dioxygenases, oxidizing nitric oxide with nitrite and shuttling electrons from NAD(P)H via FAD and O . Here, using pulse radiolysis, we investigate intramolecular electron transfer between FAD and haem b in FlavoHbs. We found that reduction of FlavoHb with hydrated electrons proceeded via two phases: an initial fast phase and a second slower process.
View Article and Find Full Text PDFWe study the timescale of random telegraph noise (RTN) of nanomagnets in stochastic magnetic tunnel junctions (MTJs). From analytical and numerical calculations based on the Landau-Lifshitz-Gilbert and the Fokker-Planck equations, we reveal mechanisms governing the relaxation time of perpendicular easy-axis MTJs (p-MTJs) and in-plane easy-axis MTJs (i-MTJs), showing that i-MTJs can be made to have faster RTN. Superparamagnetic i-MTJs with small in-plane anisotropy and sizable perpendicular effective anisotropy show relaxation times down to 8 ns at negligible bias current, which is more than 5 orders of magnitude shorter than that of typical stochastic p-MTJs and about 100 times faster than the shortest time of i-MTJs reported so far.
View Article and Find Full Text PDFPerformance of supercomputers has been steadily and exponentially increasing for the past 20 years, and is expected to increase further. This unprecedented computational power enables us to build and simulate large-scale neural network models composed of tens of billions of neurons and tens of trillions of synapses with detailed anatomical connections and realistic physiological parameters. Such "human-scale" brain simulation could be considered a milestone in computational neuroscience and even in general neuroscience.
View Article and Find Full Text PDFThe structural form and elemental distribution of material originating from different Fukushima Daiichi Nuclear Power Plant reactors (Units 1 and 3) is hereby examined to elucidate their contrasting release dynamics and the current in-reactor conditions to influence future decommissioning challenges. Complimentary computed X-ray absorption tomography and X-ray fluorescence data show that the two suites of Si-based material sourced from the different reactor Units have contrasting internal structure and compositional distribution. The known event and condition chronology correlate with the observed internal and external structures of the particulates examined, which suggest that Unit 1 ejecta material sustained a greater degree of melting than that likely derived from reactor Unit 3.
View Article and Find Full Text PDFNew methods to induce magnetization switching in a thin ferromagnetic material using femtosecond laser pulses without the assistance of an applied external magnetic field have recently attracted a lot of interest. It has been shown that by optically triggering the reversal of the magnetization in a GdFeCo layer, the magnetization of a nearby ferromagnetic thin film can also be reversed via spin currents originating in the GdFeCo layer. Here, using a similar structure, it is shown that the magnetization reversal of the GdFeCo is not required in order to reverse the magnetization of the ferromagnetic thin film.
View Article and Find Full Text PDFSince it was recently demonstrated in a spin-valve structure, magnetization reversal of a ferromagnetic layer using a single ultrashort optical pulse has attracted attention for future ultrafast and energy-efficient magnetic storage or memory devices. However, the mechanism and the role of the magnetic properties of the ferromagnet as well as the time scale of the magnetization switching are not understood. Here, we investigate single-shot all-optical magnetization switching in a GdFeCo/Cu/[CoNi/Pt] spin-valve structure.
View Article and Find Full Text PDFBackground: Niemann-Pick disease type C (NPC) is an autosomal recessive disorder caused by mutations of NPC1 or NPC2, which encode the proteins that are responsible for intracellular cholesterol trafficking. Loss of this function results in the accumulation of cholesterol-related products, such as oxysterols, sphingolipids, and NPC-related bile acids, which were recently used as biochemical biomarkers for the diagnosis of NPC. Bile acid-408 is a new significant compound we found in Japanese NPC patients, and it likely belongs to the category of bile acids.
View Article and Find Full Text PDFFront Neuroinform
April 2020
Computer simulation of the human brain at an individual neuron resolution is an ultimate goal of computational neuroscience. The Japanese flagship supercomputer, K, provides unprecedented computational capability toward this goal. The cerebellum contains 80% of the neurons in the whole brain.
View Article and Find Full Text PDFThe second messenger bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates numerous important physiological functions in bacteria. In this study, we identified and characterized the first dimeric, full-length, non-heme iron-bound phosphodiesterase (PDE) containing bacterial hemerythrin and HD-GYP domains (Bhr-HD-GYP). We found that the amino acid sequence encoded by the gene from sp.
View Article and Find Full Text PDFOne of the grand challenges for computational neuroscience and high-performance computing is computer simulation of a human-scale whole brain model with spiking neurons and synaptic plasticity using supercomputers. To achieve such a simulation, the target network model must be partitioned onto a number of computational nodes, and the sub-network models are executed in parallel while communicating spike information across different nodes. However, it remains unclear how the target network model should be partitioned for efficient computing on next generation of supercomputers.
View Article and Find Full Text PDFRadioactive particles were released into the environment during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Many studies have been conducted to elucidate the chemical composition of released radioactive particles in order to understand their formation process. However, whether radioactive particles contain nuclear fuel radionuclides remains to be investigated.
View Article and Find Full Text PDFThe Fukushima Daiichi Nuclear Power Plant (FDNPP) accident released abundant radioactive particles into the surrounding environment. Herein, we analyzed the activity of Sr in these particles to estimate the contribution of this radionuclide to the overall radiation exposure and shed light on the processes that occurred during the accident. Seven radioactive particles were isolated from the dust and soil samples collected from areas surrounding the FDNPP, and the minimum/maximum Cs activities were determined as 224/4,100 Bq.
View Article and Find Full Text PDFBackground: Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. Although transforming growth factor (TGF)-β1-induced connective tissue growth factor (CTGF/CCN2) expression has been presented in SSc fibrosis, the therapeutic potential of targeting CTGF in SSc has not been fully explored. COA-Cl is a novel nucleic acid analog, which is reported to have pleiotropic beneficial biologic effects.
View Article and Find Full Text PDF2-Cl-C.OXT-A (COA-Cl) is a novel nucleic acid analogue that promotes tube-forming activity of human umbilical vein endothelial cells (HUVEC) through vascular endothelial growth factor (VEGF). The development of coronary collateral circulation is critical to rescue the ischemic myocardium and to prevent subsequent irreversible ischemic injury.
View Article and Find Full Text PDF