Publications by authors named "Igal Finarov"

Monomeric human mitochondrial phenylalanyl-tRNA synthetase (PheRS), or hmPheRS, is the smallest known enzyme exhibiting aminoacylation activity. HmPheRS consists of only two structural domains and differs markedly from heterodimeric eukaryotic cytosolic and bacterial analogs both in the domain organization and in the mode of tRNA binding. Here, we describe the first crystal structure of mitochondrial aminoacyl-tRNA synthetase (aaRS) complexed with tRNA at a resolution of 3.

View Article and Find Full Text PDF

The crystal structure of Phenylalanyl-tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl-tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution.

View Article and Find Full Text PDF

The existence of three types of phenylalanyl-tRNA synthetase (PheRS), bacterial (alphabeta)(2), eukaryotic/archaeal cytosolic (alphabeta)(2), and mitochondrial alpha, is a prominent example of structural diversity within the aaRS family. PheRSs have considerably diverged in primary sequences, domain compositions, and subunit organizations. Loss of the anticodon-binding domain B8 in human cytosolic PheRS (hcPheRS) is indicative of variations in the tRNA(Phe) binding and recognition as compared to bacterial PheRSs.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) are a canonical set of enzymes that specifically attach corresponding amino acids to their cognate transfer RNAs in the cytoplasm, mitochondria, and nucleus. The aaRSs display great differences in primary sequence, subunit size, and quaternary structure. Existence of three types of phenylalanyl-tRNA synthetase (PheRS)-bacterial (αβ)(2), eukaryotic/archaeal cytosolic (αβ)(2), and mitochondrial α-is a prominent example of structural diversity within the aaRSs family.

View Article and Find Full Text PDF

Human cytosolic phenylalanyl-tRNA synthetase (hcPheRS) is responsible for the covalent attachment of phenylalanine to its cognate tRNA(Phe). Significant differences between the amino-acid sequences of eukaryotic and prokaryotic PheRSs indicate that the domain composition of hcPheRS differs from that of the Thermus thermophilus analogue. As a consequence of the absence of the anticodon-recognizing B8 domain, the binding mode of tRNA(Phe) to hcPheRS is expected to differ from that in prokaryotes.

View Article and Find Full Text PDF

All class II aminoacyl-tRNA synthetases (aaRSs) are known to be active as functional homodimers, homotetramers, or heterotetramers. However, multimeric organization is not a prerequisite for phenylalanylation activity, as monomeric mitochondrial phenylalanyl-tRNA synthetase (PheRS) is also active. We herein report the structure, at 2.

View Article and Find Full Text PDF