The clinical and pathological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) suggests these diseases share common underlying mechanisms, a suggestion underscored by the discovery that TDP-43 inclusions are a key pathologic feature in both ALS and FTLD. This finding, combined with the identification of TDP-43 mutations in ALS, directly implicates this DNA/RNA binding protein in disease pathogenesis in ALS and FTLD. However, many key questions remain, including what is the normal function of TDP-43, and whether disease-associated mutations produce toxicity in the nucleus, cytoplasm or both.
View Article and Find Full Text PDFThe group II metabotropic glutamate receptors 2 and 3 (mGluR2 and mGluR3) share sequence homology, common pharmacology and negative coupling to cAMP. We recently discovered that mGluR3 also is negatively coupled through a G-protein to the cGMP transduction pathway in rat cerebellar granule cells and astrocytes. To test the hypothesis that mGluR2 also has access to the cGMP pathway, C6 glioma cells were stably transfected with mGluR2 and mGluR3 cDNA and their coupling to cGMP levels was characterized.
View Article and Find Full Text PDFThe identification of pathologic TDP-43 aggregates in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, followed by the discovery of dominantly inherited point mutations in TDP-43 in familial ALS, have been critical insights into the mechanism of these untreatable neurodegenerative diseases. However, the biochemical basis of TDP-43 aggregation and the mechanism of how mutations in TDP-43 lead to disease remain enigmatic. In efforts to understand how TDP-43 alters its cellular localization in response to proteotoxic stress, we found that TDP-43 is sequestered into polyglutamine aggregates.
View Article and Find Full Text PDFMitofusins (Mfn1 and Mfn2) are outer mitochondrial membrane proteins involved in regulating mitochondrial dynamics. Mutations in Mfn2 cause Charcot-Marie-Tooth disease (CMT) type 2A, an inherited disease characterized by degeneration of long peripheral axons, but the nature of this tissue selectivity remains unknown. Here, we present evidence that Mfn2 is directly involved in and required for axonal mitochondrial transport, distinct from its role in mitochondrial fusion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2009
Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases that show considerable clinical and pathologic overlap, with no effective treatments available. Mutations in the RNA binding protein TDP-43 were recently identified in patients with familial amyotrophic lateral sclerosis (ALS), and TDP-43 aggregates are found in both ALS and FTLD-U (FTLD with ubiquitin aggregates), suggesting a common underlying mechanism. We report that mice expressing a mutant form of human TDP-43 develop a progressive and fatal neurodegenerative disease reminiscent of both ALS and FTLD-U.
View Article and Find Full Text PDFObjective: The objective of this study was to distinguish the role of specific estrogen receptors (ERs), ERalpha and ERbeta, on body weight regulation using a rat model of weight gain subsequent to menopause.
Study Design: Ovariectomized rats were utilized as the animal model to simulate the postmenopause weight gain. The rats were ovariectomized and subcutaneously injected daily with vehicle, estradiol-17beta (E2), propylpyrazoletriol (PPT; ERalpha agonist) and diarylpropionitrile (DPN; ERbeta agonist).
Exp Biol Med (Maywood)
February 2008
Luteinizing hormone-releasing hormone (LHRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotropin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of many structural variants with a variety of roles in both the brain and peripheral tissues. Enormous interest has been focused on LHRH-I and LHRH-II and their cognate receptors as targets for designing therapies to treat cancers of the reproductive system.
View Article and Find Full Text PDFLuteinizing hormone-releasing hormone (LHRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotropin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of many structural variants with a variety of roles in both the brain and peripheral tissues. Enormous interest has been focused on LHRH-I, LHRH-II, and their cognate receptors as targets for designing therapies to treat cancers of the reproductive system.
View Article and Find Full Text PDFMetabotropic receptors may couple to different G proteins in different cells or perhaps even in different regions of the same cell. To date, direct studies of group II and group III metabotropic glutamate receptors' (mGluRs) relationships to second messenger cascades have reported negative coupling of these receptors to cyclic AMP (cAMP) levels in neurons, astrocytes and transfected cells. In the present study, we found that the peptide neurotransmitter N-acetylaspartylglutamate (NAAG), an mGluR3-selective agonist, decreased sodium nitroprusside (SNP)-stimulated cyclic GMP (cGMP) levels in cerebellar granule cells and cerebellar astrocytes.
View Article and Find Full Text PDFThe death domain and death effector domain are two common motifs that mediate protein-protein interactions between components of cell death signaling complexes. The mechanism by which these domains engage their binding partners has been explored by extensive mutagenesis of two death adaptors, FADD and TRADD, suggesting that a death adaptor can discriminate its intended binding partners from other proteins harboring similar motifs. Death adaptors are found to utilize one of two topologically conserved surfaces for protein-protein interaction, whether that partner is another adaptor or its cognate receptor.
View Article and Find Full Text PDF