Facial expression is a type of communication and is useful in many areas of computer vision, including intelligent visual surveillance, human-robot interaction and human behavior analysis. A deep learning approach is presented to classify happy, sad, angry, fearful, contemptuous, surprised and disgusted expressions. Accurate detection and classification of human facial expression is a critical task in image processing due to the inconsistencies amid the complexity, including change in illumination, occlusion, noise and the over-fitting problem.
View Article and Find Full Text PDFLiver segmentation and recognition from computed tomography (CT) images is a warm topic in image processing which is helpful for doctors and practitioners. Currently, many deep learning methods are used for liver segmentation that takes a long time to train the model which makes this task challenging and limited to larger hardware resources. In this research, we proposed a very lightweight convolutional neural network (CNN) to extract the liver region from CT scan images.
View Article and Find Full Text PDFCalcium, phosphate, and magnesium are essential nutrients for plant growth. The determination of these nutrients is an important task for monitoring them in a closed hydroponic system where the nutrient elements need to be individually quantified based on ion-selective electrode (ISE) sensing. The accuracy issue of calcium ISEs due to interference, drift, and ionic strength, and the unavailability of phosphate and magnesium ISEs makes the development of these ion detecting tools hard to set up in a hydroponic system.
View Article and Find Full Text PDF