The enzyme deoxyhypusine synthase (DHS) catalyzes the first step in the post-translational modification of the eukaryotic translation factor 5A (eIF5A). This is the only protein known to contain the amino acid hypusine, which results from this modification. Both eIF5A and DHS are essential for cell viability in eukaryotes, and inhibiting DHS is a promising strategy to develop new therapeutic alternatives.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to cause severe disease and deaths in many parts of the world, despite massive vaccination efforts. Antiviral drugs to curb an ongoing infection remain a priority. The virus-encoded 3C-like main protease (MPro; nsp5) is seen as a promising target.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
March 2024
Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage.
View Article and Find Full Text PDFMotivation: Proteomic profiles reflect the functional readout of the physiological state of an organism. An increased understanding of what controls and defines protein abundances is of high scientific interest. Saccharomyces cerevisiae is a well-studied model organism, and there is a large amount of structured knowledge on yeast systems biology in databases such as the Saccharomyces Genome Database, and highly curated genome-scale metabolic models like Yeast8.
View Article and Find Full Text PDFSaccharomyces cerevisiae is a very well studied organism, yet ∼20% of its proteins remain poorly characterized. Moreover, recent studies seem to indicate that the pace of functional discovery is slow. Previous work has implied that the most probable path forward is via not only automation but fully autonomous systems in which active learning is applied to guide high-throughput experimentation.
View Article and Find Full Text PDFis a spoilage yeast with potential for biotechnological applications for production of innovative beverages with low alcohol content and high attenuation degree. Here, we present the first annotated genome of CBS 7540. The genome of CBS 7540 was assembled into 76 contigs, totaling 11,283,072 nucleotides.
View Article and Find Full Text PDFThe yeast Brettanomyces bruxellensis (syn. Dekkera bruxellensis) is an emerging and undesirable contaminant in industrial low-sugar ethanol fermentations that employ the yeast Saccharomyces cerevisiae. High-affinity glucose import in B.
View Article and Find Full Text PDFThe basidiomycete red yeast Rhodotorula toruloides is a promising platform organism for production of biooils. We present rhto-GEM, the first genome-scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox.
View Article and Find Full Text PDFBackground: is a promising platform organism for production of lipids from lignocellulosic substrates. Little is known about the metabolic aspects of lipid production from the lignocellolosic sugar xylose by oleaginous yeasts in general and in particular. This study presents the first proteome analysis of the metabolism of during conversion of xylose to lipids.
View Article and Find Full Text PDFHere, we present the genome of the industrial ethanol production strain Brettanomyces bruxellensis CBS 11270. The nuclear genome was found to be diploid, containing four chromosomes with sizes of ranging from 2.2 to 4.
View Article and Find Full Text PDFBackground: It remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite the availability of multiple sequencing technologies and tools (e.g.
View Article and Find Full Text PDFBiotechnol Appl Biochem
October 2014
Adaptation of Dekkera bruxellensis to lignocellulose hydrolysate was investigated. Cells of D. bruxellensis were grown for 72 and 192 H in batch and continuous culture, respectively (adapted cells).
View Article and Find Full Text PDFLactobacillus vini was recently described as a contaminant in industrial ethanol fermentations and its co-occurrence with Dekkera bruxellensis was noted. We investigated the growth characteristics of L. vini in cocultivation together with either Saccharomyces cerevisiae or D.
View Article and Find Full Text PDFDekkera bruxellensis can outcompete Saccharomyces cerevisiae in environments with low sugar concentrations. It is usually regarded as a spoilage yeast but has lately been identified as an alternative ethanol production organism. In this study, global gene expression in the industrial isolate D.
View Article and Find Full Text PDFA previous study showed that the use of nitrate by Dekkera bruxellensis might be an advantageous trait when ammonium is limited in sugarcane substrate for ethanol fermentation. The aim of the present work was to evaluate the influence of nitrate on the yeast physiology during cell growth in different carbon sources under oxygen limitation. If nitrate was the sole source of nitrogen, D.
View Article and Find Full Text PDFIntegrated storage and pre-treatment (ISP) combines biopreservation of moist material under airtight conditions and pre-treatment. Moist wheat straw was inoculated with the biocontrol yeast Wickerhamomyces anomalus, the xylan degrading yeast Scheffersomyces stipitis or a co-culture of both. The samples and non-inoculated controls were stored at 4 or 15 °C.
View Article and Find Full Text PDF