Non-Hermitian systems have attracted much interest in recent decades, driven partly by the existence of exotic spectral singularities, known as exceptional points (EPs), where the dimensionality of the system evolution operator is reduced. Among various intriguing applications, the discovery of EPs has suggested the potential for implementing a symmetric mode switch, when encircling them in a system parameter space. However, subsequent theoretical and experimental works have revealed that dynamical encirclement of EPs invariably results in asymmetric mode conversion; namely, the mode switching depends only on the winding direction but not on the initial state.
View Article and Find Full Text PDFNontrivial spectral properties of non-Hermitian systems can lead to intriguing effects with no counterparts in Hermitian systems. For instance, in a two-mode photonic system, by dynamically winding around an exceptional point (EP) a controlled asymmetric-symmetric mode switching can be realized. That is, the system can either end up in one of its eigenstates, regardless of the initial eigenmode, or it can switch between the two states on demand, by simply controlling the winding direction.
View Article and Find Full Text PDFA universal characterization of non-Markovianity for any open hybrid quantum systems is presented. This formulation is based on the negativity volume of the generalized Wigner function, which serves as an indicator of the quantum correlations in any composite quantum systems. It is shown, that the proposed measure can be utilized for any single or multi-partite quantum system, containing any discrete or continuous variables.
View Article and Find Full Text PDFWe investigate the performance of a certain nonclassicality identifier, expressed via integrated second-order intensity moments of optical fields, in revealing bipartite entanglement of quantum-optical frequency combs (QOFCs), which are generated in both spontaneous and stimulated parametric down-conversion processes. We show that, by utilizing that nonclassicality identifier, one can well identify the entanglement of the QOFC directly from the experimentally measured intensity moments without invoking any state reconstruction techniques or homodyne detection. Moreover, we demonstrate that the stimulated generation of the QOFC improves the entanglement detection of these fields with the nonclassicality identifier.
View Article and Find Full Text PDFIn a recent paper, Tilma, Everitt et al. derived a generalized Wigner function that can characterize both the discrete and continuous variable states, i.e.
View Article and Find Full Text PDFWe analyze the controlled teleportation protocol through three-qubit mixed states. In particular, we investigate the relation between the faithfulness of the controlled teleportation scheme and entanglement. While our knowledge concerning controlled teleportation and entanglement in pure states is well established, for mixed states it is considerably much harder task and very little has been done in this field.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFDifferent non-classicality criteria expressed in the form of inequalities among intensity moments and elements of photon-number distributions are applied to noisy twin beams and other two-mode states obtained from a twin beam by using a beam splitter. Their performance in revealing the non-classicality is judged in comparison with the exact results provided by suitable entanglement and local non-classicality quantifiers. Whereas the non-classicality of noisy twin beams is always revealed by these criteria, not all the nonclassical states obtained at the output of the beam splitter can be identified by these experimentally easily reachable criteria.
View Article and Find Full Text PDFNonclassicality criteria based on intensity moments and derived from the usual matrix approach are compared to those provided by the majorization theory. The majorization theory is shown to give a greater number of more suitable nonclassicality criteria. Fifteen experimentally useful criteria of the majorization theory containing the intensity moments up to the fifth order are identified.
View Article and Find Full Text PDFMultipartite entanglement and nonclassicality of four-mode Gaussian states generated in two simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly entangled states are found. Transfer of the entanglement from the down-converted modes into the up-converted ones is also suggested.
View Article and Find Full Text PDFWe introduce a new quantity for describing nonclassicality of an arbitrary optical two-mode Gaussian state which remains invariant under any global photon-number preserving unitary transformation of the covariance matrix of the state. The invariant naturally splits into an entanglement monotone and local-nonclassicality quantifiers applied to the reduced states. This shows how entanglement can be converted into local squeezing and vice versa.
View Article and Find Full Text PDF