Publications by authors named "Ieng-Wai Un"

Modern all-optical logic switches demand selective, precise, and rapid transmission of optical information. In this study, we investigate an epsilon-near-zero (ENZ) metamaterial composed of silver (Ag) and magnesium fluoride (MgF), which demonstrates a low conversion threshold, strong nonlinear response, and nonlinear absorption conversion. Particularly noteworthy is its highest nonlinear absorption (β≈-2 × 10cm/GW) occurring at the ENZ point (695 nm) under deposited condition.

View Article and Find Full Text PDF

The strong coupling of epsilon-near-zero materials with nanoantennas has demonstrated enhanced nonlinear optical responses, yet practical challenges persist. Here, we propose an alternative: an ultrathin metasurface featuring broadband response with a weakly dispersive nonlinear index, achieved through a simple implementation. Our metasurface, comprising a disordered gold nanorod array on indium tin oxide, exhibits polarization-independent behavior and a large average nonlinear refractive index of 5 cm/GW across a broad wavelength range (1000-1300 nm).

View Article and Find Full Text PDF

Photoluminescence from metal nanostructures following intense ultrashort illumination is a fundamental aspect of light-matter interactions. Surprisingly, many of its basic characteristics are under ongoing debate. Here, we resolve many of these debates by providing a comprehensive theoretical framework that describes this phenomenon and support it by an experimental confirmation.

View Article and Find Full Text PDF

Understanding the intricate relationship between illumination and temperature in metallic nano-particles is crucial for elucidating the role of illumination in various physical processes which rely on plasmonic enhancement but are also sensitive to temperature. Recent studies have shown that the temperature rise in optically thick ensembles of metal nanoparticles under intense illumination is dominated by the thermal conductivity of the host, rather than by the optical properties of the metal or the host. Here, we show that the temperature dependence of the thermal conductivity of the host dominates the nonlinear photothermal response of these systems.

View Article and Find Full Text PDF

The search for the signature of nonthermal (so-called "hot") electrons in illuminated plasmonic nanostructures requires detailed understanding of the nonequilibrium electron distribution under illumination, as well as a careful design of the experimental system employed to distinguish nonthermal electrons from thermal ones. Here, we provide a theory for using plasmonic molecular junctions to achieve this goal. We show how nonthermal electrons can be measured directly and separately from the unavoidable thermal response and discuss the relevance of our theory to recent experiments.

View Article and Find Full Text PDF

In his Comment to our paper "Thermal effects - an alternative mechanism for plasmon-assisted photocatalysis", Jain correctly points out that using an Arrhenius fit to the reaction rate is not enough to distinguish thermal from non-thermal effects.

View Article and Find Full Text PDF

Recently, there has been a growing interest in the usage of mm-scale composites of plasmonic nanoparticles for enhancing the rates of chemical reactions; the effect was shown recently to be predominantly associated with the elevated temperature caused by illumination. Here, we study the dependence of the temperature distribution on the various parameters of these samples, and provide analytic expressions for simple cases. We show that since these systems are usually designed to absorb all the incoming light, the temperature distribution in them is weakly-dependent on the illumination spectrum, pulse duration, particle shape, size and density.

View Article and Find Full Text PDF

Recent experiments claimed that the catalysis of reaction rates in numerous bond-dissociation reactions occurs the decrease of activation barriers driven by non-equilibrium ("hot") electrons in illuminated plasmonic metal nanoparticles. Thus, these experiments identify plasmon-assisted photocatalysis as a promising path for enhancing the efficiency of various chemical reactions. Here, we argue that what appears to be photocatalysis is much more likely thermo-catalysis, driven by the well-known plasmon-enhanced ability of illuminated metallic nanoparticles to serve as heat sources.

View Article and Find Full Text PDF

Zhou (Reports, 5 October 2018, p. 69) claim to have proven dominance of "hot" electrons over thermal effects in plasmonic photocatalysis. We identify experimental flaws that caused overestimation of the hot carrier contribution.

View Article and Find Full Text PDF

In a recent paper, we derived a self-consistent theory of the steady-state electron distribution of a metal under continuous wave illumination which treats thermal and non-thermal effects on the same footing. Here, we re-derive the main analytical results of that study from very simple arguments, and draw a series of conclusions which contradict claims made in previous studies of the steady-state distribution. In particular, we show that the faster chemical reactions reported in many previous papers are extremely unlikely to originate from high energy non-thermal electrons.

View Article and Find Full Text PDF

We investigate the interface state on one-dimensional hyperbolic metamaterial (1DHMM). Initially, we analyze the plasmonic band structure of binary 1DHMM and analytically determine its band crossing condition. Then, we scrutinize the existence of an interface state in the plasmonic band gap of 1DHMM on three types of interfaces: dielectric/1DHMM, metal/1DHMM, and 1DHMM/1DHMM.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR) has shown its remarkable applications in biosensing, bioimaging, and nanophotonics. Unlike surface plasmon polariton (SPP), the current studies regarding LSPR as biosensor were restricted in probing the extinction spectra, and thus limit the performance in biosensing and bioimaging. Here, we reveal that optical phase of LSPR provides an acute change at resonance beyond extinction spectra, which permits an ultra-high sensitivity in phase interrogation.

View Article and Find Full Text PDF

We present symmetric and asymmetric couplings within a pair of split-ring resonators (SRRs). The former shows a single transmittance dip, following the equivalent circuit model; yet, the latter introduces an additional transmittance peak, stemming from an asymmetrically coupled resonance (ACR) between the subradiant and superradiant modes. The mechanism of such induced transparency is elucidated well by the suppression of induced currents within the SRR element with a lower quality factor.

View Article and Find Full Text PDF