The functional and sensory augmentation of living structures, such as human skin and plant epidermis, with electronics can be used to create platforms for health management and environmental monitoring. Ideally, such bioelectronic interfaces should not obstruct the inherent sensations and physiological changes of their hosts. The full life cycle of the interfaces should also be designed to minimize their environmental footprint.
View Article and Find Full Text PDFBidirectional haptic communication devices accelerate the revolution of virtual/augmented reality and flexible/wearable electronics. As an emerging kind of flexible piezoelectric materials, piezoelectret materials can effortlessly convert mechanical force into electrical signals and respond to electrical fields in a deformation manner, exhibiting enormous potential in the construction of bidirectional haptic communication devices. Existing reviews on piezoelectret materials primarily focus on flexible energy harvesters and sensors, and the recent development of piezoelectret-based bidirectional haptic communication devices has not been comprehensively reviewed.
View Article and Find Full Text PDFLymph nodes (LNs) are organs of the immune system, critical for maintenance of homeostasis and initiation of immune responses, yet there are few models that accurately recapitulate LN functions in vitro. To tackle this issue, an engineered murine LN (eLN) has been developed, replicating key cellular components of the mouse LN; incorporating primary murine lymphocytes, fibroblastic reticular cells, and lymphatic endothelial cells. T and B cell compartments are incorporated within the eLN that mimic LN cortex and paracortex architectures.
View Article and Find Full Text PDFNoncontact human-machine interactions (HMIs) provide a hygienic and intelligent approach to communicate between humans and machines. However, current noncontact HMIs are generally hampered by the interaction distance, and they lack the adaptability to environmental interference such as high humidity conditions. Here, we explore a self-powered electret-based noncontact sensor (ENS) with moisture-resisting ability and ultrawide sensing range exceeding 2.
View Article and Find Full Text PDFUnlabelled: Extrusion-based cell deposition has become a prominent technique for expanding bioprinting applications. However, the associated print resolution in the order of nanolitre or above has been a limiting factor. The demand for improving print resolution towards the scale of a single cell has driven the development of precision nozzle extrusion, although the benefits gained remain ambiguous.
View Article and Find Full Text PDFRealizing the translational impacts of three-dimensional (3D) bioprinting for cancer research necessitates innovation in bioprinting workflows which integrate affordability, user-friendliness, and biological relevance. Herein, we demonstrate 'BioArm', a simple, yet highly effective extrusion bioprinting platform, which can be folded into a carry-on pack, and rapidly deployed between bio-facilities. BioArm enabled the reconstruction of compartmental tumoroids with cancer-associated fibroblasts (CAFs), forming the shell of each tumoroid.
View Article and Find Full Text PDFCoating conventional metallic electrodes with conducting polymers has enabled the essential characteristics required for bioelectronics, such as biocompatibility, electrical conductivity, mechanical compliance, and the capacity for structural and chemical functionalization of the bioelectrodes. However, the fragile interface between the conducting polymer and the electrode in wet physiological environment greatly limits their utility and reliability. Here, a general yet reliable strategy to seamlessly interface conventional electrodes with conducting hydrogel coatings is established, featuring tissue-like modulus, highly-desirable electrochemical properties, robust interface, and long-term reliability.
View Article and Find Full Text PDFWith the strengthening capacity through harnessing multi-length-scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low-cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze-casting and compression-annealing is reported, leading to a hierarchically structured hydrogel material.
View Article and Find Full Text PDFUtilizing smart face masks to monitor and analyze respiratory signals is a convenient and effective method to give an early warning for chronic respiratory diseases. In this work, a smart face mask is proposed with an air-permeable and biodegradable self-powered breath sensor as the key component. This smart face mask is easily fabricated, comfortable to use, eco-friendly, and has sensitive and stable output performances in real wearable conditions.
View Article and Find Full Text PDFFlexible and stretchable light emitting devices are driving innovation in myriad applications, such as wearable and functional electronics, displays and soft robotics. However, the development of flexible electroluminescent devices via conventional techniques remains laborious and cost-prohibitive. Here, we report a facile and easily-accessible route for fabricating a class of flexible electroluminescent devices and soft robotics via direct ink writing-based 3D printing.
View Article and Find Full Text PDFThree-dimensional (3D) printing has emerged as a powerful tool for material, food, and life science research and development, where the technology's democratization necessitates the advancement of open-source platforms. Herein, we developed a hackable, multi-functional, and modular extrusion 3D printer for soft materials, nicknamed Printer.HM.
View Article and Find Full Text PDFHydrogels have gained intensive interest in biomedical and flexible electronics, and adhesion of hydrogels to substrates or devices is indispensable in these application scenarios. Although numerous hydrogel adhesion strategies have been developed, it is still challenging to achieve a hydrogel with robust adhesion interface through a universal yet simple method. Here, a strategy for establishing strong interfacial adhesion between various hydrogels and a wide variety of substrates (i.
View Article and Find Full Text PDFCell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrices (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3m).
View Article and Find Full Text PDFCochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of clinically-relevant in vitro, in vivo or in silico models. Here, we present 3D printing-neural network co-modelling for interpreting electric field imaging profiles of cochlear implant patients.
View Article and Find Full Text PDFComposite formation and chemical cross-linking are common strategies in tuning the functionality and performance of biologically derived fibers fabricated by electrospinning. The modification to the initial polymeric solution changes the fiber-processing parameters and the associated fiber morphologies. Here, we investigated the gelatin solution formulation and how the addition of homogenized decellularized matrix particles (dCMps) can alter the processability of gelatin fibers produced by low-voltage electrospinning patterning.
View Article and Find Full Text PDFUnlabelled: Recreating tissue-specific microenvironments of the extracellular matrix (ECM) in vitro is of broad interest for the fields of tissue engineering and organ-on-a-chip. Here, we present biofunctional ECM protein fibres and suspended membranes, with tuneable biochemical, mechanical and topographical properties. This soft and entirely biologic membrane scaffold, formed by micro-nano-fibres using low voltage electrospinning, displays three unique characteristics for potential cell culture applications: high-content of key ECM proteins, single-layered mesh membrane, and flexibility for in situ integration into a range of device setups.
View Article and Find Full Text PDF