Publications by authors named "Idrissi A"

Introduction: The use of urine cytobacteriological examination is a common and essential practice in medicine which helps guide therapeutic management in case of urinary tract infection. The cytological examination of urine samples can be done using the manual (microscopic) or automated technique. The automated approach, which involves the use of artificial intelligence, is faster, more reliable, and more efficient for laboratories.

View Article and Find Full Text PDF

In this work, we carry out a systematic computer simulation investigation of the single particle dynamics at the free surface of imidazolium-based room temperature ionic liquids by applying intrinsic surface analysis. Besides assessing the effect of the potential model and temperature, we focus in particular on the effect of changing the anion type, and, hence, their shape and size. Further, we also address the role of the length of the cation alkyl chains, known to protrude into the vapor phase, on the surface dynamics of the ions.

View Article and Find Full Text PDF

Introduction And Importance: , a member of the family within the order, is predominantly associated with urinary tract infections in hospitalized individuals, particularly those with indwelling urinary catheters. However, wound infections caused by are exceedingly rare, with an estimated incidence of around 0.1 %.

View Article and Find Full Text PDF

Allyl Cellulose (AC) was synthesized using allyl bromide in sodium hydroxide (NaOH)/urea aqueous solution. By employing a molar ratio of 6:1 of allyl bromide/cellulose, low-degree of substitution (DS) water-soluble AC (AC) was obtained (DS = 0.67).

View Article and Find Full Text PDF

Prompt Gamma Imaging (PGI) is a promising technique for range verification in Particle Therapy. This technique was already tested in clinical environment with a knife-edge-collimator camera for proton treatments but remains relatively unexplored for Carbon Ion Radiation Therapy (CIRT). Previous FLUKA simulations suggested that PG profile shifts could be detected in CIRT with a precision of ∼ 4 mm ([Formula: see text]) for a particle statistic equal to [Formula: see text] C-ions using a 10 × 10 cm camera.

View Article and Find Full Text PDF

Hypothesis: Experimental information on the molecular scale structure of ionic liquid interfaces is controversial, giving rise to two competing scenarios, namely the double layer-like and "chessboard"-like structures. This issue can be resolved by computer simulation methods, at least for the underlying molecular model. Systematically changing the anion type can elucidate the relative roles of electrostatic interactions, hydrophobic (or, strictly speaking, apolar) effects and steric restrictions on the interfacial properties.

View Article and Find Full Text PDF

In advancing sodium-ion battery technology, we introduce a novel application of NaNiZr(PO) with a NASICON structure as an anode material. This research unveils, for the first time, its exceptional ability to maintain high specific capacity and unprecedented cycle stability under extreme current densities up to 1000 mA·g, within a low voltage window of 0.01-2.

View Article and Find Full Text PDF

Castleman disease is a rare type of lymph node hyperplasia primarily affecting the mediastinum, with mesenteric localization being extremely uncommon. It is classified into solitary and multicentric forms. In this case report, we present the case of a 46-year-old female patient in whom an incidental mesenteric mass was discovered during the workup for a ventral hernia.

View Article and Find Full Text PDF

In this study, a new eco-friendly urea-rich sodium alginate-based hydrogel with a slow-release nitrogen property was prepared, and its effectiveness was evaluated in the cultivation of tomato plants under different water stress levels. The structure and performance of the hydrogel were investigated by FTIR, XRD, TGA, DTG, and SEM. The swelling and release experiments showed that prepared urea-rich hydrogel exhibited a high-water holding capacity (412 ± 4 g/g) and showed a sustained and slow nitrogen release property.

View Article and Find Full Text PDF

Performing molecular dynamics simulations with the TIP4P/2005 water model along 9 isobars (from 175 to 375 bar) in the temperature range between 300 and 1100 K, we have found that the loci of the extrema in the rate of change of specific structural properties can be used to define purely structure-based Widom lines. We have examined several parameters that describe the local structure of water, such as the tetrahedral arrangement, nearest neighbor distance, local density around the molecules, and the size of the largest dense domain. The last two parameters were determined using the Voronoi polyhedral and density-based spatial clustering of applications with noise methods, respectively.

View Article and Find Full Text PDF

We conducted a study on the photophysics of three indoline dyes, D102, D149, and D205, in binary mixtures of ionic liquids (IL) and polar aprotic molecular solvents (MS). Specifically, we examined the behavior of these dyes in IL-MS mixtures containing four different imidazolium-based ILs and three different polar aprotic MSs. Our investigation involved several techniques, including stationary absorption and emission measurements, as well as femtosecond transient absorption (TA) spectroscopy.

View Article and Find Full Text PDF

This study investigated the effects of varying water stress levels on essential oils (EO). Three samples (S1, S2, and S3) were cultivated under different stress levels (40, 60, and 80%). Increased water stress led to changes in primary and secondary metabolites, EO contents, and physical properties.

View Article and Find Full Text PDF

Correction for 'Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis' by Badr-Eddine Channab , , 2024, https://doi.org/10.1039/d3nr05012b.

View Article and Find Full Text PDF

The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs).

View Article and Find Full Text PDF

This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities.

View Article and Find Full Text PDF

Objectives: This study aims to validate the SAEF-A (Scale Assessment Of Executive Functions-Adult) test, a new instrument for measuring executive functions in adults.

Materials And Methods: The study participants are residents of Fez-Meknes over 18 years old. Two groups were enrolled: people with epilepsy and a healthy group.

View Article and Find Full Text PDF
Article Synopsis
  • Superabsorbent polymers (SAPs) are versatile materials with a wide array of uses, which is reflected in numerous research articles and patents dedicated to them.
  • The review explores their history, classifications, preparation methods, and their performance factors in water absorption, especially highlighting the potential of polysaccharides-based SAPs for agricultural applications as soil conditioners and slow-release fertilizers.
  • Additionally, the text discusses the mechanics of water retention, nutrient release kinetics through mathematical models, and the beneficial role of SAPs in enhancing crop growth while addressing challenges like drought and salinity.
View Article and Find Full Text PDF

DFT and TDDFT approaches were used to design three (T) molecules based on 4,4'-dimethoxy-2,2'-bithiophene core to explore the influence of substitution of triphenylamine (TPA) fragment by methoxy groups, and introduction of azomethine π-bridges on the optoelectronic properties of hole transporting materials for perovskite solar cells (PSCs) or as donor for organic solar cells (OSCs). To shed light on the efficiency, stability, and solubility several physicochemical parameters were computed in dichloromethane solvent. All designed molecules show appropriate frontier molecular orbital levels, which facilitates effective hole transfer from the perovskite materials to the HTMs in the hole-transporting layer in PSC devices.

View Article and Find Full Text PDF

This comprehensive review thoroughly examines starch's structure, modifications, and applications in slow/controlled-release fertilizers (SRFs) for agricultural purposes. The review begins by exploring starch's unique structure and properties, providing insights into its molecular arrangement and physicochemical characteristics. Various methods of modifying starch, including physical, chemical, and enzymatic techniques, are discussed, highlighting their ability to impart desirable properties such as controlled release and improved stability.

View Article and Find Full Text PDF

Tau protein was discovered as a microtubule-associated protein nearly 50 years ago, and our understanding of tau has revolved around that role. Even with tau's rise to stardom as a central player in neurodegenerative disease, therapeutic efforts have largely been targeted toward cytoskeletal changes. While some studies hinted toward non-cytoskeletal roles for tau, it is only fairly recently that these ideas have begun to receive considerable attention.

View Article and Find Full Text PDF

The main challenge facing agriculture today is water scarcity. At present, agriculture consumes around 70 % of the planet's freshwater, much of which is lost through evaporation, leaching and runoff. This wastage, combined with the increased frequency and severity of droughts linked to climate change, is having a considerable negative impact on crops.

View Article and Find Full Text PDF

In this paper, a benzyltriethylammonium/urea DES was investigated as a new green and eco-friendly medium for the progress of organic chemical reactions, particularly the dissolution and the functionalization of cellulose. In this regard, the viscosity-average molecular weight of cellulose () during the dissolution/regeneration process was investigated, showing no significant degradation of the polymer chains. Moreover, X-ray diffraction patterns indicated that the cellulose dissolution process in the BTEAB/urea DES decreased the crystallinity index from 87% to 75%, and there was no effect on type I cellulose polymorphism.

View Article and Find Full Text PDF

A facile chemical procedure was utilized to produce an effective peroxy-monosulfate (PMS) activator, namely ZnCoO/alginate. To enhance the degradation efficiency of Rhodamine B (RhB), a novel response surface methodology (RSM) based on the Box-Behnken Design (BBD) method was employed. Physical and chemical properties of each catalyst (ZnCoO and ZnCoO/alginate) were characterized using several techniques, such as FTIR, TGA, XRD, SEM, and TEM.

View Article and Find Full Text PDF

In this study, six small carbazole-based molecules are investigated for usage as hole transport materials (HTMs) in perovskite solar cells. Among these compounds, two molecules based on 9-(4-(thiophen-2-yl)phenyl)-9H-carbazole thiophene-phenyle and carbazole (M and M) were already synthesized, and four new molecules are designed by substituting carbazole, in positions 3,6 and 2,7, with methoxyphenyl (P and P) and dimethoxyphenylamine (E and E). Theoretical methods used in the calculations included density functional theory and time-dependent density functional theory.

View Article and Find Full Text PDF