Biofilms can constitute permanent threats to food safety and public health. Bacteria and viruses lodged in biofilm can escape cleaning and sanitizing agents. The aim of this study was to compare Pseudomonas aeruginosa developing and mature biofilms produced on agri-food surfaces in terms of interaction with murine norovirus.
View Article and Find Full Text PDFThe aim of the study was to assess human norovirus and feline calicivirus (FCV) surface free energy, hydrophobicity, and ability to interact with fresh foods and food-contact surfaces. Virus-like particles (VLPs) of human norovirus (GI.1 and GII.
View Article and Find Full Text PDFLoss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration).
View Article and Find Full Text PDFAlthough the spread of human norovirus reportedly depends on its ability to bind to food materials, the mechanism of the phenomenon remains unknown. Since protein size and electrical charge are reportedly important parameters in their adsorption, the current work is focused on determining human noroviruses isoelectric point (IEP), electrical charge and aggregate size at different pH, ionic strength (IS), and temperature. Using the baculovirus expression vector system, we produced and purified virus-like particles (VLPs) of GI.
View Article and Find Full Text PDF