Publications by authors named "Idris O Raji"

To unlock the full promise of messenger (mRNA) therapies, expanding the toolkit of lipid nanoparticles is paramount. However, a pivotal component of lipid nanoparticle development that remains a bottleneck is identifying new ionizable lipids. Here we describe an accelerated approach to discovering effective ionizable lipids for mRNA delivery that combines machine learning with advanced combinatorial chemistry tools.

View Article and Find Full Text PDF

Inhaled delivery of mRNA has the potential to treat a wide variety of diseases. However, nebulized mRNA lipid nanoparticles (LNPs) face several unique challenges including stability during nebulization and penetration through both cellular and extracellular barriers. Here we develop a combinatorial approach addressing these barriers.

View Article and Find Full Text PDF

Neural stem cells, the source of newborn neurons in the adult hippocampus, are intimately involved in learning and memory, mood, and stress response. Despite considerable progress in understanding the biology of neural stem cells and neurogenesis, regulating the neural stem cell population precisely has remained elusive because we have lacked the specific targets to stimulate their proliferation and neurogenesis. The orphan nuclear receptor TLX/NR2E1 governs neural stem and progenitor cell self-renewal and proliferation, but the precise mechanism by which it accomplishes this is not well understood because its endogenous ligand is not known.

View Article and Find Full Text PDF

Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

The piperazine heterocycle is housed within a large number of FDA-approved drugs and biological probe compounds. Structurally, however, these compounds are mostly confined to substitutions on the two ring nitrogen atoms, rationalizing the expansion of piperazine chemical diversity through carbon substitutions. On the basis of the concept of systematic chemical diversity, a divergent six-step synthesis was developed in which chiral amino acids were transformed, with high diastereoselectivity, into either cis or trans 5-substituted piperazine-2-acetic acid esters that could be chromatographically rendered diastereomerically homogeneous.

View Article and Find Full Text PDF

β-cell proliferation induction is a promising therapeutic strategy to restore β-cell mass. By screening small molecules in a transgenic zebrafish model of type 1 diabetes, we identified inhibitors of non-canonical IκB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε), as enhancers of β-cell regeneration. The most potent β-cell regeneration enhancer was a cinnamic acid derivative (E)-3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA), which, acting through the cAMP-dependent protein kinase A (PKA), stimulated β-cell-specific proliferation by increasing cyclic AMP (cAMP) levels and mechanistic target of rapamycin (mTOR) activity.

View Article and Find Full Text PDF

The piperazine heterocycle is broadly exploited in FDA-approved drugs and biologically active compounds, but its chemical diversity is usually limited to ring nitrogen substitutions, leaving the four carbon atoms underutilized. Using an efficient six-step synthesis, chiral amino acids were transformed into 3-substituted piperazine-2-acetic acid esters as diastereomeric mixtures whose cis and trans products (dr 0.56 → 2.

View Article and Find Full Text PDF