An accurate and simple screening method has been developed for the determination of fluoroquinolone antibiotics. Carbon dots were synthesized by simple hydrothermal treatment as highly fluorescent nano-sensors. They were subsequently used in the synthesis of organic-based molecularly imprinted polymers to develop fluorescence-based polymeric composites using enoxacin as a representative dummy template molecule of fluoroquinolones.
View Article and Find Full Text PDFFLAG tag (DYKDDDDK) is a small epitope peptide employed for the purification of recombinant proteins such as immunoglobulins, cytokines, and gene regulatory proteins. It provides superior purity and recoveries of fused target proteins when compared to the commonly used His-tag. Nevertheless, the immunoaffinity-based adsorbents required for their isolation are far more expensive than the ligand-based affinity resin used in combination with the His-tag.
View Article and Find Full Text PDFOver the last decades, an increasing demand for new specific molecular recognition elements has emerged in order to improve analytical methods that have already been developed in order to reach the detection/quantification limits of target molecules. Molecularly imprinted polymers (MIPs) have molecular recognition abilities provided by the presence of a template molecule during their synthesis, and they are excellent materials with high selectivity for sample preparation. These synthetic polymers are relatively easy to prepare, and they can also be an excellent choice in the substitution of antibodies or enzymes in different kinds of assays.
View Article and Find Full Text PDFFluoroquinolones (FQs) are broad-spectrum antibiotics widely used to treat animal and human infections. The use of FQs in these activities has increased the presence of antibiotics in wastewater and food, triggering antimicrobial resistance, which has severe consequences for human health. The detection of antibiotics residues in water and food samples has attracted much attention.
View Article and Find Full Text PDFHydrogen sulfide monitoring has become essential in the natural gas industry, biogas production, wastewater treatment plants, paper mills, sewers, and landfills of waste due to its toxic, irritating, extremely flammable, and corrosive features. However, each of the current monitoring technologies (gas chromatography, lead acetate tape, electrochemical, UV and NIR absorption) has its own limitations. Furthermore, the existing luminescent molecular probes for HS cannot monitor it continuously due to the irreversibility of their reaction with the analyte.
View Article and Find Full Text PDF