Publications by authors named "Iddo Weiner"

Article Synopsis
  • Primary sclerosing cholangitis (PSC) involves harmful inflammation and scarring of bile ducts and has been linked to certain gut bacteria, particularly Klebsiella pneumoniae and Enterococcus gallinarum, found abundantly in PSC patients' fecal samples.* -
  • Research shows that carriers of these bacteria experience more severe disease and inflammation, validated through experiments in mice where PSC-related Kp worsens liver injury.* -
  • A developed lytic phage cocktail effectively targets and reduces Kp levels, improving liver health in affected mice, suggesting this treatment could be a promising strategy for managing PSC.*
View Article and Find Full Text PDF

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation.

View Article and Find Full Text PDF

Summary: Next-Generation Sequencing is widely used as a tool for identifying and quantifying microorganisms pooled together in either natural or designed samples. However, a prominent obstacle is achieving correct quantification when the pooled microbes are genetically related. In such cases, the outcome mostly depends on the method used for assigning reads to the individual targets.

View Article and Find Full Text PDF

The integration of genes into the nuclear genome of is mediated by Non-Homologous-End-Joining, thus resulting in unpredicted insertion locations. This phenomenon defines 'the position-effect', which is used to explain the variation of expression levels between different clones transformed with the same DNA fragment. Likewise, nuclear transgenes often undergo epigenetic silencing that reduces their expression; hence, nuclear transformations require high-throughput screening methods to isolate clones that express the foreign gene at a desirable level.

View Article and Find Full Text PDF

Chloroplasts originated from an ancient cyanobacterium and still harbor a bacterial-like genome. However, the centrality of Shine-Dalgarno ribosome binding, which predominantly regulates proteobacterial translation initiation, is significantly decreased in chloroplasts. As plastid ribosomal RNA anti-Shine-Dalgarno elements are similar to their bacterial counterparts, these sites alone cannot explain this decline.

View Article and Find Full Text PDF

While bacterial operons have been thoroughly studied, few analyses of chloroplast operons exist, limiting the ability to study fundamental elements of these structures and utilize them for synthetic biology. Here, we describe the creation of a plastome-specific operon database (link provided below) achieved by combining experimental tools and predictive modeling. Using a Reverse-Transcription-PCR based method and published data, we determined the transcription-state of 213 gene pairs from four plastomes of evolutionary distinct organisms.

View Article and Find Full Text PDF

Motivation: Regulation of the amount of protein that is synthesized from genes has proved to be a serious challenge in terms of analysis and prediction, and in terms of engineering and optimization, due to the large diversity in expression machinery across species.

Results: To address this challenge, we developed a methodology and a software tool (ChimeraUGEM) for predicting gene expression as well as adapting the coding sequence of a target gene to any host organism. We demonstrate these methods by predicting protein levels in seven organisms, in seven human tissues, and by increasing in vivo the expression of a synthetic gene up to 26-fold in the single-cell green alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Many microbiological assays include colonies that produce a luminescent or fluorescent (here generalized as "luminescent") signal, often in the form of luminescent halos around the colonies. These signals are used as reporters for a trait of interest; therefore, exact measurements of the luminescence are often desired. However, there is currently a lack of high-throughput methods for analyzing these assays, as common automatic image analysis tools are unsuitable for identifying these halos in the presence of the inherent biological noise.

View Article and Find Full Text PDF

Various species of microalgae have recently emerged as promising host-organisms for use in biotechnology industries due to their unique properties. These include efficient conversion of sunlight into organic compounds, the ability to grow in extreme conditions and the occurrence of numerous post-translational modification pathways. However, the inability to obtain high levels of nuclear heterologous gene expression in microalgae hinders the development of the entire field.

View Article and Find Full Text PDF

Despite the impressive progress made in recent years in understanding the early steps in charge separation within the photosynthetic reaction centers, our knowledge of how ferredoxin (Fd) interacts with the acceptor side of photosystem I (PSI) is not as well developed. Fd accepts electrons after transiently docking to a binding site on the acceptor side of PSI. However, the exact location, as well as the stoichiometry, of this binding have been a matter of debate for more than two decades.

View Article and Find Full Text PDF

Background: Hydrogen photo-production in green algae, catalyzed by the enzyme [FeFe]-hydrogenase (HydA), is considered a promising source of renewable clean energy. Yet, a significant increase in hydrogen production efficiency is necessary for industrial scale-up. We have previously shown that a major challenge to be resolved is the inferior competitiveness of HydA with NADPH production, catalyzed by ferredoxin-NADP(+)-reductase (FNR).

View Article and Find Full Text PDF

Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen.

View Article and Find Full Text PDF