Publications by authors named "Idan Yelin"

The incidence of beta-lactam resistance among clinical isolates is a major health concern. A key method to study the emergence of antibiotic resistance is adaptive laboratory evolution. However, in the case of the beta-lactam ampicillin, bacteria evolved in laboratory settings do not recapitulate clinical-like resistance levels, hindering efforts to identify major evolutionary paths and their dependency on genetic background.

View Article and Find Full Text PDF

Programmed chromosomal inversions allow bacteria to generate intra-population genotypic and functional heterogeneity, a bet-hedging strategy important in changing environments. Some programmed inversions modify coding sequences, producing different alleles in several gene families, most notably in specificity-determining genes such as Type I restriction-modification systems, where systematic searches revealed cross phylum abundance. Yet, a broad, gene-independent, systematic search for gene-altering programmed inversions has been absent, and little is known about their genomic sequence attributes and prevalence across gene families.

View Article and Find Full Text PDF

The BNT162b2 COVID-19 vaccine has been shown to reduce viral load of breakthrough infections (BTIs), an important factor affecting infectiousness. This viral-load protective effect has been waning with time post the second vaccine and later restored with a booster shot. It is currently unclear though for how long this regained effectiveness lasts.

View Article and Find Full Text PDF

Treatment of bacterial infections currently focuses on choosing an antibiotic that matches a pathogen's susceptibility, with less attention paid to the risk that even susceptibility-matched treatments can fail as a result of resistance emerging in response to treatment. Combining whole-genome sequencing of 1113 pre- and posttreatment bacterial isolates with machine-learning analysis of 140,349 urinary tract infections and 7365 wound infections, we found that treatment-induced emergence of resistance could be predicted and minimized at the individual-patient level. Emergence of resistance was common and driven not by de novo resistance evolution but by rapid reinfection with a different strain resistant to the prescribed antibiotic.

View Article and Find Full Text PDF

Quantifying the detection rate of the widely used quantitative RT-PCR (RT-qPCR) test for severe acute respiratory syndrome coronavirus 2 and its dependence on patient demographic characteristics and disease progression is key in designing epidemiologic strategies. Analyzing 843,917 test results of 521,696 patients, a "positive period" was defined for each patient between diagnosis of coronavirus disease 2019 and the last positive test result. The fraction of positive test results within this period was then used to estimate detection rate.

View Article and Find Full Text PDF

The effectiveness of the coronavirus disease 2019 (COVID-19) BNT162b2 vaccine in preventing disease and reducing viral loads of breakthrough infections (BTIs) has been decreasing, concomitantly with the rise of the Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, it is unclear whether the observed decreased effectiveness of the vaccine in reducing viral loads is inherent to the Delta variant or is dependent on time from immunization. By analyzing viral loads of over 16,000 infections during the current, Delta-variant-dominated pandemic wave in Israel, we found that BTIs in recently fully vaccinated individuals have lower viral loads than infections in unvaccinated individuals.

View Article and Find Full Text PDF

Early in life, infants are colonized with multiple bacterial strains whose differences in gene content can have important health consequences. Metagenomics-based approaches have revealed gene content differences between different strains co-colonizing newborns, but less is known about the rate, mechanism, and phenotypic consequences of gene content diversification within strains. Here, focusing on Staphylococcus epidermidis, we whole-genome sequence and phenotype more than 600 isolates from newborns.

View Article and Find Full Text PDF

Mass vaccination has the potential to curb the current COVID-19 pandemic by protecting individuals who have been vaccinated against the disease and possibly lowering the likelihood of transmission to individuals who have not been vaccinated. The high effectiveness of the widely administered BNT162b vaccine from Pfizer-BioNTech in preventing not only the disease but also infection with SARS-CoV-2 suggests a potential for a population-level effect, which is critical for disease eradication. However, this putative effect is difficult to observe, especially in light of highly fluctuating spatiotemporal epidemic dynamics.

View Article and Find Full Text PDF

Beyond their substantial protection of individual vaccinees, coronavirus disease 2019 (COVID-19) vaccines might reduce viral load in breakthrough infection and thereby further suppress onward transmission. In this analysis of a real-world dataset of positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test results after inoculation with the BNT162b2 messenger RNA vaccine, we found that the viral load was substantially reduced for infections occurring 12-37 d after the first dose of vaccine. These reduced viral loads hint at a potentially lower infectiousness, further contributing to vaccine effect on virus spread.

View Article and Find Full Text PDF

Background: The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to a current pandemic of unprecedented scale. Although diagnostic tests are fundamental to the ability to detect and respond, overwhelmed healthcare systems are already experiencing shortages of reagents associated with this test, calling for a lean immediately applicable protocol.

Methods: RNA extracts of positive samples were tested for the presence of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction, alone or in pools of different sizes (2-, 4-, 8-, 16-, 32-, and 64-sample pools) with negative samples.

View Article and Find Full Text PDF

Beta-lactamase inhibitors are increasingly used to counteract antibiotic resistance mediated by beta-lactamase enzymes. These inhibitors compete with the beta-lactam antibiotic for the same binding site on the beta-lactamase, thus generating an evolutionary tradeoff: mutations that increase the enzyme's beta-lactamase activity tend to increase also its susceptibility to the inhibitor. Here, we investigate how common and accessible are mutants that escape this adaptive tradeoff.

View Article and Find Full Text PDF

Probiotics are routinely administered to hospitalized patients for many potential indications but have been associated with adverse effects that may outweigh their potential benefits. It is particularly alarming that probiotic strains can cause bacteremia, yet direct evidence for an ancestral link between blood isolates and administered probiotics is lacking. Here we report a markedly higher risk of Lactobacillus bacteremia for intensive care unit (ICU) patients treated with probiotics compared to those not treated, and provide genomics data that support the idea of direct clonal transmission of probiotics to the bloodstream.

View Article and Find Full Text PDF

Antibiotic resistance is prevalent among the bacterial pathogens causing urinary tract infections. However, antimicrobial treatment is often prescribed 'empirically', in the absence of antibiotic susceptibility testing, risking mismatched and therefore ineffective treatment. Here, linking a 10-year longitudinal data set of over 700,000 community-acquired urinary tract infections with over 5,000,000 individually resolved records of antibiotic purchases, we identify strong associations of antibiotic resistance with the demographics, records of past urine cultures and history of drug purchases of the patients.

View Article and Find Full Text PDF

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature.

View Article and Find Full Text PDF

Bacterial mechanisms of drug resistance operate at sequential lines of defense tackling drug at entry, accumulation, target binding, or downstream toxicity. These mechanisms are encoded by genomic changes ranging in scale from point mutations, through assembly of preexisting genetic elements, to horizontal import of genes from the environment. A many-to-many relationship prevails between resistance mechanisms and the spectrum of genetic changes encoding them.

View Article and Find Full Text PDF

Members of the yeast family of PUF proteins bind unique subsets of mRNA targets that encode proteins with common functions. They therefore became a paradigm for post-transcriptional gene control. To provide new insights into the roles of the seemingly redundant Puf1 and Puf2 members, we monitored the growth rates of their deletions under many different stress conditions.

View Article and Find Full Text PDF

A key aspect of bacterial survival is the ability to evolve while migrating across spatially varying environmental challenges. Laboratory experiments, however, often study evolution in well-mixed systems. Here, we introduce an experimental device, the microbial evolution and growth arena (MEGA)-plate, in which bacteria spread and evolved on a large antibiotic landscape (120 × 60 centimeters) that allowed visual observation of mutation and selection in a migrating bacterial front.

View Article and Find Full Text PDF

Antibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if detectable, antibiotic concentrations. Except possibly around localized antibiotic sources, where resistance can provide a strong advantage, bacterial fitness is dominated by stresses unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions influence the selective advantage or disadvantage of antibiotic resistance? Here we find that sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance around localized sources of almost any toxin or stress.

View Article and Find Full Text PDF

Advances in sequencing technologies have enabled the identification of mutations acquired by bacterial pathogens during infection. However, it remains unclear whether adaptive mutations fix in the population or lead to pathogen diversification within the patient. Here we study the genotypic diversity of Burkholderia dolosa within individuals with cystic fibrosis by resequencing individual colonies and whole populations from single sputum samples.

View Article and Find Full Text PDF

Escherichia coli (E. coli) mazEF is a toxin-antitoxin (TA) stress-induced module that mediates cell death requiring the quorum-sensing pentapeptide NNWNN designated EDF (extracellular death factor). E.

View Article and Find Full Text PDF