Background: Diabetic retinopathy (DR) is a leading cause of blindness in adults worldwide. Artificial intelligence (AI) with autonomous deep learning algorithms has been increasingly used in retinal image analysis, particularly for the screening of referrable DR. An established treatment for proliferative DR is panretinal or focal laser photocoagulation.
View Article and Find Full Text PDFObjective: Treatment response assessment in patients with high-grade gliomas (HGG) is heavily dependent on changes in lesion size on MRI. However, in conventional MRI, treatment-related changes can appear as enhancing tissue, with similar presentation to that of active tumor tissue. We propose a model-free data-driven method for differentiation between these tissues, based on dynamic contrast-enhanced (DCE) MRI.
View Article and Find Full Text PDFJ Magn Reson Imaging
August 2019
Background: Differentiation between glioblastoma and brain metastasis is highly important due to differing medical treatment strategies. While MRI is the modality of choice for the assessment of patients with brain tumors, differentiation between glioblastoma and solitary brain metastasis may be challenging due to their similar appearance on MRI.
Purpose: To differentiate between glioblastoma and brain metastasis subtypes using radiomics analysis based on conventional post-contrast T -weighted (T W) MRI.