Publications by authors named "Ida Porcelli"

Assembly of flagella requires strict hierarchical and temporal control via flagellar sigma and anti-sigma factors, regulatory proteins and the assembly complex itself, but to date non-coding RNAs (ncRNAs) have not been described to regulate genes directly involved in flagellar assembly. In this study we have investigated the possible role of two ncRNA paralogs (CjNC1, CjNC4) in flagellar assembly and gene regulation of the diarrhoeal pathogen Campylobacter jejuni. CjNC1 and CjNC4 are 37/44 nt identical and predicted to target the 5' untranslated region (5' UTR) of genes transcribed from the flagellar sigma factor σ54.

View Article and Find Full Text PDF

Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+.

View Article and Find Full Text PDF

Background: Gene reshuffling, point mutations and horizontal gene transfer contribute to bacterial genome variation, but require the genome to rewire its transcriptional circuitry to ensure that inserted, mutated or reshuffled genes are transcribed at appropriate levels. The genomes of Epsilonproteobacteria display very low synteny, due to high levels of reshuffling and reorganisation of gene order, but still share a significant number of gene orthologs allowing comparison. Here we present the primary transcriptome of the pathogenic Epsilonproteobacterium Campylobacter jejuni, and have used this for comparative and predictive transcriptomics in the Epsilonproteobacteria.

View Article and Find Full Text PDF

Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes.

View Article and Find Full Text PDF

The food-borne bacterial pathogen Campylobacter jejuni efficiently utilizes organic acids such as lactate and formate for energy production. Formate is rapidly metabolized via the activity of the multisubunit formate dehydrogenase (FDH) enzyme, of which the FdhA subunit is predicted to contain a selenocysteine (SeC) amino acid. In this study we investigated the function of the cj1500 and cj1501 genes of C.

View Article and Find Full Text PDF

The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system.

View Article and Find Full Text PDF

The Tat system mediates Sec-independent transport of folded precursor proteins across the bacterial plasma membrane or the chloroplast thylakoid membrane. Tat transport involves distinct high-molecular-weight TatA and TatBC complexes. Here we report the 3D architecture of the TatA complex from Escherichia coli obtained by single-particle electron microscopy and random conical tilt reconstruction.

View Article and Find Full Text PDF

The Tat protein export system serves to export folded proteins harboring an N-terminal twin arginine signal peptide across the cytoplasmic membrane. In this study, we have used gene expression profiling of Escherichia coli supported by phenotypic analysis to investigate how cells respond to a defect in the Tat pathway. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are defective in the integrity of their cell envelope because of the mislocalization of two amidases involved in cell wall metabolism (Ize, B.

View Article and Find Full Text PDF

The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. In this report we have studied the functions of conserved residues within the structurally related TatA and TatB proteins. Our results demonstrate that there are two regions within each protein of high sequence conservation that are critical for efficient Tat translocase function.

View Article and Find Full Text PDF

Proteins bearing a signal peptide with a consensus twin-arginine motif are translocated via the Tat pathway, a multiprotein system consisting minimally of the integral inner membrane proteins TatA, TatB, and TatC. On a molar basis, TatA is the major pathway component. Here we show that TatA can be purified independently of the other Tat proteins as a 460 kDa homooligomeric complex.

View Article and Find Full Text PDF

The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded proteins across the inner membrane. The integral membrane proteins TatA, TatB and TatC are essential components of this pathway. Substrate proteins are directed to the Tat apparatus by specialized N-terminal signal peptides bearing a consensus twin-arginine sequence motif.

View Article and Find Full Text PDF
Article Synopsis
  • Bioactive carbohydrates play a key role in various biological processes, and understanding their biosynthesis is vital for exploring their functions.
  • Lactobacillus helveticus NCC2745 has been found to produce a new type of exocellular polysaccharide, with the discovery of its specific gene cluster being significant for future research.
  • A novel enzymatic assay has been developed to determine sugar specificities in glycosyltransferases, allowing for faster characterization, while a biosynthesis model of the polysaccharide's repeating unit is proposed, detailing the roles of enzymes EpsE through EpsJ in chain formation.
View Article and Find Full Text PDF