Proc Natl Acad Sci U S A
August 2023
Although sensor technologies have allowed us to outperform the human senses of sight, hearing, and touch, the development of artificial noses is significantly behind their biological counterparts. This largely stems from the sophistication of natural olfaction, which relies on both fluid dynamics within the nasal anatomy and the response patterns of hundreds to thousands of unique molecular-scale receptors. We designed a sensing approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us to extract information from a single sensor (here, the reflectance spectra from a mesoporous one-dimensional photonic crystal) rather than relying on a large sensor array.
View Article and Find Full Text PDFImplantable tubes, shunts, and other medical conduits are crucial for treating a wide range of conditions from ears and eyes to brain and liver but often impose serious risks of device infection, obstruction, migration, unreliable function, and tissue damage. Efforts to alleviate these complications remain at an impasse because of fundamentally conflicting design requirements: Millimeter-scale size is required to minimize invasiveness but exacerbates occlusion and malfunction. Here, we present a rational design strategy that reconciles these trade-offs in an implantable tube that is even smaller than the current standard of care.
View Article and Find Full Text PDFAnalyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display.
View Article and Find Full Text PDFInfrared (IR) sensors employing optical readout represent a promising class of devices for the development of thermographic imagers. We demonstrate an infrared radiation detection principle based on thermally tunable one-dimensional (1D) photonic crystals acting as optical filters, integrated with organic and inorganic light emitting diodes (OLEDs and LEDs, respectively). The optical filters are composed of periodically assembled mesoporous TiO2 and SiO2 layers.
View Article and Find Full Text PDF