Publications by authors named "Ida Kero"

This work is dedicated to developing a laboratory method for assessing emissions of polycyclic aromatic hydrocarbons (PAHs) from different carbon-based materials at elevated temperatures. The method will additionally contribute to enhancing the fundamental knowledge about the formation and decomposition of these compounds during various process conditions. Developing a method entails designing a setup for laboratory-scale experiments utilizing different furnace configurations and off-gas capturing media.

View Article and Find Full Text PDF

Background: It is difficult to assess workers' exposure to ultrafine particles (UFP) due to the lack of personal sampling equipment available for this particle fraction. The logbook method has been proposed as a general method for exposure assessment. This method measures the time and concentration components of the time-weighted average concentration separately and could be suitable for investigation of UFP exposure.

View Article and Find Full Text PDF

Tremendous efforts are applied in the ferroalloy industry to control and reduce exposure to dust generated during the production process, as inhalable Mn-containing particulate matter has been linked to neurodegenerative diseases. This study aimed to investigate the toxicity and biological effects of dust particles from laboratory-scale processes where molten silicomanganese (SiMn) was exposed to air, using a human astrocytoma cell line, 1321N1, as model system. Characterization of the dust indicated presence of both nano-sized and larger particles averaging between 100 and 300 nm.

View Article and Find Full Text PDF

Despite the rigorous emission control measures in the ferroalloy industry, there are still emissions of dust during the production of various alloys. Dust particles were collected from laboratory scale processes where oxide particulate matter was formed from liquid silicon (metallurgical grade). The dust was produced in a dry air atmosphere to mimic industrial conditions.

View Article and Find Full Text PDF

Airborne particulate matter in the silicon carbide (SiC) industry is a known health hazard. The aims of this study were to elucidate whether the particulate matter generated inside the Acheson furnace during active operation is representative of the overall particulate matter in the furnace hall, and whether the Acheson furnaces are the main sources of ultrafine particles (UFP) in primary SiC production. The number concentration of ultrafine particles was evaluated using an Electrical Low Pressure Impactor (ELPI, Dekati Ltd.

View Article and Find Full Text PDF

Silicon carbide (SiC) is largely used in various products such as diesel particulate filters and solar panels. It is produced through the Acheson process where aerosolized fractions of SiC and other by-products are generated in the work environment and may potentially affect the workers' health. In this study, dust was collected directly on a filter in a furnace hall over a time period of 24h.

View Article and Find Full Text PDF

The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations.

View Article and Find Full Text PDF

The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys.

View Article and Find Full Text PDF