Publications by authors named "Ida Dulinska-Molak"

This article presents the results of experiments, which examine cell mechanisms with the goal of confirming the effective action of the active ingredients used in anti-aging cosmetics. Skin stiffness measurements with the use of an atomic force microscope on two forms of vitamin C (ascorbyl tetraisopalmitate and l-ascorbic acid) have been presented. The estimated Young's modulus for three types of cells (a control as well as cells treated with two forms of vitamin C) has shown significant differences in the stiffness of the tested cells which was confirmed in the histological staining experiment.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) and fluorescence microscopy was applied to determine the influence of the anti-aging peptides on the morphology and the mechanical properties of keratinocytes. Immortalized human keratinocytes (HaCaT) were treated with two anti-aging bioactive peptides: Acetyl Tetrapeptide-2 and Acetyl Hexapeptide-50 (Lipotec). The AFM measurement of the keratinocyte stiffness were carried after 48 h exposure at an indentation depth of 200 nm.

View Article and Find Full Text PDF

Nanomaterials and nanoparticles are regarded as promising candidates for various biomedical applications due to their unique physicochemical properties. In this study, three types of carbon-encapsulated iron nanoparticles (CEINs) were synthesized and their impact on cellular changes was investigated by atomic force microscopy (AFM). The AFM experiment was additionally compared with conventional methods, such as colorimetric assay and other microscopic techniques.

View Article and Find Full Text PDF

Adhesion and spreading are essential processes of anchorage dependent cells involved in regulation of cell functions. Cells interact with their extracellular matrix (ECM) resulting in different degree of adhesion and spreading. However, it is not clear whether cell adhesion or cell spreading is more important for cell functions.

View Article and Find Full Text PDF

There is increasing evidence that microstructures play an important role in the maintenance of the multipotency of stem cells. However, it is not clear how micropatterns affect the stemness of stem cells. We prepared micropatterns of different sizes, shapes and aspect ratios and used them for the culture of mesenchymal stem cells (MSCs) derived from human bone marrow to investigate their influence on the stemness of MSCs at the single cell level.

View Article and Find Full Text PDF

The investigation of subtle change of cells exposed to nanomaterials is extremely essential but also challenging for nanomaterial-based biological applications. In this study, atomic force microscopy (AFM) was employed to investigate the effects of iron-iron oxide core-shell magnetic nanoparticles on the mechanical properties of bovine articular chondrocytes (BACs). After being exposed to the nanoparticles even at a high nanoparticle-concentration (50 μg mL(-1)), no obvious difference was observed by using conventional methods, including the WST-1 assay and live/dead staining.

View Article and Find Full Text PDF

It is important to elucidate the effects of carbon nanotubes on cell functions for their biomedical applications. In this study, the effect of single-walled carbon nanotubes (SWCNTs) on the mechanical property of chondrocytes was investigated by atomic force microscopy. Chondrocytes were cultured in medium containing SWCNTs and showed an increase uptake of SWCNTs with culture time.

View Article and Find Full Text PDF

With a range of biological properties, single-walled carbon nanotubes (SWCNTs) are a promising material for nanobiotechnology. Concerns about their potential effect on human health have led to the interest in understanding the interaction between SWCNTs and cells. There are many reports showing the potential cellular effects of SWCNTs but this issue is quite controversially discussed in the literature.

View Article and Find Full Text PDF

One of an essential characteristic of human skin are time dependent mechanical properties. Here, we demonstrate that stiffness of human dermal fibroblast correlates with age and it can be restored after anti-wrinkle tripeptide treatment. The stiffness of human fibroblasts isolated from donors of 30-, 40- and 60 years old were examined.

View Article and Find Full Text PDF

Umbilical cord blood (UCB) is an attractive source of hematopoietic stem and progenitor cells (HSPCs) for transplantation. However, the low number of HSPCs from a single UCB donor limits the direct transplantation of UCB to patients. Because little is known about the effects of the physical microenvironment on HSPC expansion, we investigated the ex vivo expansion of HSPCs cultured on biomaterials with different elasticities and grafted with different nanosegments.

View Article and Find Full Text PDF